
1

Divide and Conquer Algorithms:
Advanced Sorting

Prichard Ch. 10.2: Advanced Sorting
Algorithms

Sorting Algorithm

n  Organize a collection of data into either
ascending or descending order.

n  Internal sort
q  Collection of data fits entirely in the computer’s

main memory

n  External sort
q  Collection of data will not fit in the computer’s

main memory all at once.

n  We will only discuss internal sort.

2
CS200 Advanced Sorting

3

Sorting Refresher from cs161

n  Simple Sorts: Bubble, Insertion, Selection
n  Doubly nested loop
n  Outer loop puts one element in its place
n  It takes i steps to put element i in place

q  n-1 + n-2 + n-3 + … + 3 + 2 + 1
q  O(n2) complexity
q  In place: O(n) space

CS200 Advanced Sorting

Mergesort

n  Recursive sorting algorithm

n  Divide-and-conquer
q  Step 1. Divide the array into halves
q  Step 2. Sort each half
q  Step 3. Merge the sorted halves into one sorted

array

4
CS200 Advanced Sorting

5

MergeSort code
public void mergesort(Comparable[] theArray, int first, int last){

// Sorts the items in an array into ascending order.

// Precondition: theArray[first..last] is an array.

// Postcondition: theArray[first..last] is a sorted permutation

if (first < last) {

int mid = (first + last) / 2; // midpoint of the array

mergesort(theArray, first, mid);

mergesort(theArray, mid + 1, last);

merge(theArray, first, mid, last);

}// if first >= last, there is nothing to do

}

CS200 Advanced Sorting

O time complexity of MergeSort

Think of the call tree for n = 2k

q  for non powers of two we round to next 2k

q  same O

6
CS200 Advanced Sorting

7

Merge Sort - Divide

{7,3,2,9,1,6,4,5}

{7,3,2,9} {1,6,4,5}

{7,3} {2,9} {1,6} {4,5}

{7} {3} {2} {9} {1} {6} {4} {5}

How many divides ?

How much work per divide ?

O for divide phase ?

8

Merge Sort - Merge

{1,2,3,4,5,6,7,9}

{2,3,7,9} {1,4,5,6}

{3,7} {2,9} {1,6} {4,5}

{7} {3} {2} {9} {1} {6} {4} {5}

{7} {3} {2} {9} {1} {6} {4} {5}

{1,2,3,4,5,6,7,9}

{2,3,7,9} {1,4,5,6}

{3,7} {2,9} {1,6} {4,5}

At depth i
■  work done?

 Total depth?

 Total work?

O(log n)

O(n log n)

O(n)

10

Data:

Temp:

2 3 7 9 1 4 5 6

2 3 7 9 1 4 5 6
Step 1:

1

2 3 7 9 1 4 5 6
Step 2:

1 2

2 3 7 9 1 4 5 6
Step 3:

1 2 3

2 3 7 9 1 4 5 6
Step 4:

1 2 3 4

TOP MERGE PHASE

TOP MERGE PHASE
11

2 3 7 9 1 4 5 6

1 2 3 4

Step 5:
2 3 7 9 1 4 5 6

1 2 3 4 5

Step 6: 2 3 7 9 1 4 5 6

1 2 3 4 5 6

Step 7: 2 3 7 9 1 4 5 6

1 2 3 4 5 6 7

Step 8:
2 3 7 9 1 4 5 6

1 2 3 4 5 6 7 9

Merge code I
private void merge (Comparable[] theArray, Comparable[]

tempArray, int first, int mid, int last({

 int first1 = first;
 int last1 = mid;
 int first2 = mid+1;
 int last2 = last;
 int index = first1; // incrementally creates sorted array

 while ((first1 <= last1) && (first2 <= last2)){
 if(theArray[first1].compareTo(theArray[first2])<=0) {
 tempArray[index] = theArray[first1];
 first1++;
 }
 else{
 tempArray[index] = theArray[first2];
 first2++;
 }
 index++;
 }

12
CS200 Advanced Sorting

Merge code II
// finish off the two subarrays, if necessary
while (first1 <= last1){

 tempArray[index] = theArray[first];
 first1++;
 index++; }
 while(first2 <= last2)
 tempArray[index] = theArray[first2];
 first2++;
 index++; }
 // copy back
 for (index = first; index <= last: ++index){
 theArray[index] = tempArray[index];
 }

13
CS200 Advanced Sorting

Mergesort Complexity

n  Analysis
q  Merging:

n  for total of n items in the two array segments, at most
n -1 comparisons are required.

n  n moves from original array to the temporary array.

n  n moves from temporary array to the original array.

n  Each merge step requires O(n) steps

14
CS200 Advanced Sorting

Mergesort: More complexity

n  Each call to mergesort recursively calls itself
twice.

n  Each call to mergesort divides the array into two.

q  First time: divide the array into 2 pieces

q  Second time: divide the array into 4 pieces
q  Third time: divide the array into 8 pieces

n  How many times can you divide n into 2 before it gets to 1?

15
CS200 Advanced Sorting

Mergesort Levels
n  If n is a power of 2 (i.e. n = 2k), then the

recursion goes k = log2n levels deep.

n  If n is not a power of 2, there are

 (ceiling)log2n

 levels of recursive calls to mergesort.

16
CS200 Advanced Sorting

Mergesort Operations
n  At level 0, the original call to mergesort calls merge

once. (O(n) steps) At level 1, two calls to mergesort
and each of them will call merge, total O(n) steps

n  At level m, 2m <= n calls to merge

q  Each of them will call merge with n/2m items and each of them

requires O(n/2m) operations. Together, O(n) + O(2m) steps,
where 2m<=n, hence O(n) work at each level

n  Because there are O(log2n) levels , total O(n log n)
work

17
CS200 Advanced Sorting

Mergesort Computational Cost

n  mergesort is O(n*log2n) in both the worst
and average cases.

n  Significantly faster than O(n2) (as in bubble,
insertion, selection sorts)

18
CS200 Advanced Sorting

19

Stable Sorting Algorithms

n  Suppose we are sorting a database of users
according to their name. Users can have identical
names.

n  A stable sorting algorithm maintains the relative
order of records with equal keys (i.e., sort key
values). Stability: whenever there are two records R
and S with the same key and R appears before S in
the original list, R will appear before S in the sorted
list.

n  Is mergeSort stable? What do we need to check?

CS200 Advanced Sorting

Quicksort

1.  Select a pivot item.
2.  Partition array into 3 parts

•  Pivot in its “sorted” position
•  Subarray with elements < pivot
•  Subarray with elements >= pivot

3.  Recursively apply to each sub-array

20
CS200 Advanced Sorting

Quicksort Key Idea: Pivot

21

 < p
p >= p

 < p1 p1 >= p1 < p2 p2 >= p2

CS200 Advanced Sorting

Question

n  An invariant for the QuickSort code is:
A.  After the first pass, the P< partition is fully

sorted.
B.  After the first pass, the P>= partition is fully

sorted.
C.  After each pass, the pivot is in the correct

position.
D.  It has no invariant.

22
CS200 Advanced Sorting

QuickSort Code

 public void quickSort(Comparable[] theArray, int first, int last) {

int pivotIndex;

 if (first < last) {

 // create the partition: S1, Pivot, S2

 pivotIndex = partition(theArray, first, last);

 // sort regions S1 and S2

 quickSort(theArray, first, pivotIndex-1);

 quickSort(theArray, pivotIndex+1, last);

 }

 }

23
CS200 Advanced Sorting

24

Quick Sort - Partitioning
5 1 8 2 3 6 7 4

P < < > ? ? ? ?

5 1 8 2 3 6 7 4

5 1 8 2 3 6 7 4

5 1 2 8 3 6 7 4

5 1 2 3 8 6 7 4

5 1 2 3 8 6 7 4

5 1 2 3 8 6 7 4

1 2 3 4 6 7 8

4 1 2 3 5 6 7 8

5

first last
firstUnknown

lastS1

Invariant for partition

25

P

first

< P >= P ?

last firstUnknown lastS1

S1 S2 Unknown Pivot

Initial state of the array

26

P

first

?

last firstUnknown

lastS1

Unknown Pivot

CS200 Advanced Sorting

Partition Overview

1.  Choose and position pivot
2.  Take a pass over the current part of the

array
1.  If item < pivot, move to S1 by incrementing S1

last position and swapping item into beginning of
S2

2.  If item >= pivot, leave where it is
3.  Place pivot in between S1 and S2

27
CS200 Advanced Sorting

Partition Code: the Pivot
 private int partition(Comparable[] theArray, int first, int last) {

Comparable tempItem;

 // place pivot in theArray[first]

 // by default, it is what is in first position

 choosePivot(theArray, first, last);

 Comparable pivot = theArray[first]; // reference pivot

 // initially, everything but pivot is in unknown

 int lastS1 = first; // index of last item in S1

28
CS200 Advanced Sorting

Partition Code: Segmenting
 // move one item at a time until unknown region is empty

 for (int firstUnknown = first + 1; firstUnknown <= last; ++firstUnknown)

{// move item from unknown to proper region

if (theArray[firstUnknown].compareTo(pivot) < 0) {

// item from unknown belongs in S1

++lastS1; // figure out where it goes

tempItem = theArray[firstUnknown]; // swap it with first unknown

theArray[firstUnknown] = theArray[lastS1];

theArray[lastS1] = tempItem;

 } // end if

 // else item from unknown belongs in S2 – which is where it is!

 } // end for

29
CS200 Advanced Sorting

Partition Code: Replace Pivot
 // place pivot in proper position and mark its location

 tempItem = theArray[first];

 theArray[first] = theArray[lastS1];

 theArray[lastS1] = tempItem;

 return lastS1;

 } // end partition

30
CS200 Advanced Sorting

CS200 Advanced Sorting 31

Quicksort Visualizations

n  http://en.wikipedia.org/wiki/Quicksort
n  http://www.sorting-algorithms.com
n  Hungarian Dancers via YouTube

Average Case
n  Each level involves,

q  Maximum (n – 1) comparisons.

q  Maximum (n – 1) swaps. (3(n – 1) data movements)

q  log2 n levels are required.

n  Average complexity O(n log2 n)

32

 < p
p >= p

 < p1 p1 >= p1 < p2 p2 >= p2

CS200 Advanced Sorting

Question

n  Is QuickSort like MergeSort in that it is
always O(nlogn) complexity?

A.  Yes
B.  No

33
CS200 Advanced Sorting

34

When things go bad…

n  Worst case
q  quicksort is O(n2) when every time the smallest

item is chosen as the pivot (e.g. when it is sorted)

 Worst case analysis

n  This case involves
(n-1)+(n-2)+(n-3)+…+1+0 = n(n-1)/2�
comparisons

n  Quicksort is O(n2) for the worst-case.

35
CS200 Advanced Sorting

Strategies for Selecting pivot

n  First value: worst case if the array is sorted.

n  If we look at only one value, whatever value
we pick, we can and up in the worst case (if it
is the minimum).

n  Median of 3 sample values
q  Worst case O(n2) can still happen
q  but less likely

36
CS200 Advanced Sorting

37

quickSort – Algorithm Complexity
n  Depth of call tree?

n  O(log n) split roughly in half, best case
n  O(n) worst case

n  Work done at each depth
n  O(n)

n  Total Work
n  O(n log n) best case
n  O(n2) worst case

CS200 Advanced Sorting

Clicker Q

n  Why would someone pick QuickSort over
MergeSort?

A.  Less space
B.  Better worst case complexity
C.  Better average complexity
D.  Lower multiplicative constant in average

complexity

38
CS200 Advanced Sorting

39

How fast can we sort?

n  Observation: all the sorting algorithms so far
are comparison sorts
q  A comparison sort must do at least O(n)

comparisons (why?)
q  We have an algorithm that works in O(n log n)
q  What about the gap between O(n) and O(n log n)

n  Theorem (cs 420):
 all comparison sorts are Ω(n log n)

n  MergeSort is therefore an “optimal” algorithm
 CS200 Advanced Sorting

40

Radix Sort (by MSD)

80 24 62 40 68 20 26

24, 20, 26 40 62, 68 80

20 24 26 40 62 68 80

0. Represent all numbers with the same number of digits
1. Take the most significant digit (MSD) of each number.
2. Sort the numbers based on that digit, grouping
elements with the same digit into one bucket.
3. Recursively sort each bucket, starting with the next digit
to the right.
 4. Concatenate the buckets together in order.

Radix sort

n  Analysis
§  n moves each time it forms groups

§  n moves to combine them again into one group.

§  Total 2n*d (for the strings of d characters)

41
CS200 Advanced Sorting

42

Radix Sort

n  Why not use it for every application?

CS200 Advanced Sorting

