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Priority Queues 

n  Characteristics 
q  Items are associated with a value: priority 
q  One element at a time - the one with the highest 

priority 

n  Uses 
q  Operating systems: processes and threads 
q  Network management 

n  Real time traffic usually gets highest priority when 
bandwidth is limited 
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Priority Queue ADT Operations 

1.  Create an empty priority queue 
createPQueue()

2.  Determine whether empty 
pqIsEmpty():boolean

3.  Insert new item 
pqInsert(in newItem:PQItemType) throws 

PQueueException

4.  Retrieve and delete the item with the highest priority 
pqDelete():PQItemType
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PQ –  ArrayList Implementation 

n  ArrayList ordered by priority 
q  pqInsert: find the correct position for  add at that 

position, the ArrayList.add(i,item) method will shift the 
array elements to make room for the new item 

q  pqDelete: remove last item (at size()-1) 
q  Why did we organize it in increasing order? 

20 … 3 95 95 96 99 30 

size 0 1 29 
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PQ – Reference-based Implementation 

n  Reference-based implementation 
q  Sorted in descending order 

n  Highest priority value is at the beginning of the linked list 
n  pqDelete returns the item that psHead references and 

changes pqHead to reference the next item. 
n  pqInsert must traverse the list to find the correct position 

for insertion. 

96 99.2 95.8 3 

pqHead … 
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PQ – BST Implementation  
n  Binary search tree 

q  Where is the highest 
value of the nodes? 

q  pqInsert O(height)  
n  at a new leaf, e.g.30 

q  pqDelete O(height) 
n  need to remove the max 
n  max has at most one child 
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The problem with BST 

n  BST can get unbalanced (height = O(n)) so in 
the worst case pqInsert and pqDelete can get 
O(n). 

n  A more balanced tree structure would be better. 
n  What is a balanced binary tree structure? 

q  Height of any node’s right sub-tree differs from left 
sub-tree by 0 or 1 

n  A complete binary tree is balanced, and it is 
easy to put the nodes in an array. 
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Complete Binary Tree 

8 

Level-by-level numbering of  a complete binary tree, NOTE 0 based! 

0:Jane 

1:Bob 2:Tom 

3:Alan 4:Ellen 5:Nancy 

What is the parent 
 child index relationship? 
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left child i: at 2*i+1 

right child i: at 2*(i+1) 

lparent i: at (i-1)/2 



Heap - Definition 

n  A maximum heap (maxheap) is a complete 
binary tree that satisfies the following: 
q  It is an empty tree 
    or it has the heap property: 

n  Its root contains a key greater or equal to the keys of 
its children 

n  Its left and right sub-trees are also maxheaps 

q  A minheap has the root less or equal children, 
and left and right sub trees are also minheaps 
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maxHeap Property Implications 

n  Implications of the heap property: 
q  The root holds the maximum value (global property) 
q  Values in descending order on every path from root 

to leaf 

n  Heap is NOT a binary search tree, as in a BST the 
nodes in the right sub tree of the root are larger 
than the root 
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Examples 

Satisfies heap 
property  
AND 
Complete 

Satisfies heap 
property BUT 
Not complete 

Does not  
satisfy heap 
property AND 
Not complete 

50 

25 20 

10 15 5 

30 

25 5 

10 

15 

20 

30 

20 15 

10 5 25 
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Heap ADT 
createHeap()  // create empty heap

heapIsEmpty():boolean
// determines if empty

heapInsert(in newItem:HeapItemType) 
throws HeapException
/* inserts newItem based on its search key. 
  Throws exception if heap full          
This may not happen if e.g.implemented 
with an ArrayList */

heapDelete():HeapItemType
// retrieves and then deletes heap’s root
// item which has largest search key 
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Array(List) Implementation 

50 

25 20 

10 15 5 

50 
20 
25 
10 
15 
5 
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Array(List) Implementation  

n  Traversal items: 
q  Root at position 0 
q  Left child of position i at position 2*i+1 
q  Right child of position i at position 2*(i+1) 
q  Parent of position i at position (i-1)/2  
     (integer division) 
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Heap Operations - heapInsert

n  Step 1: put a new value into first open position 
(maintaining completeness), i.e. at the end 

n  but now we potentially violated the heap property, 
so: 

n  Step 2: bubble values up 

q  Re-enforcing the heap property  

q  Swap with parent until in the right place 
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Insertion into a heap (Insert 15) 

9 

6 5 

3 2 15 

Insert 15 
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Insertion into a heap (Insert 15) 

9 

6 

5 

3 2 
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bubble up 



Insertion into a heap (Insert 15) 

15 

6 

5 

3 2 
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Heap operations – heapDelete

n  Step 1: always remove value at root, the max/min is 
at root. 

n  Step 2: substitute with rightmost leaf of bottom level 
to fill the void by removing the very last element in 
the array. 

n  Step 3: percolate / bubble down to satisfy heap 
property. 
q  Swap with maximum child as necessary, until in place 

q  this is called HEAPIFY  
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Deletion from a heap 

5 

9 

3 2 

10 

6 

Delete 10 
Place last node in root 
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bubble down 
heapify 
draw the heap 



5 

9 

3 2 

6 
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Array-based Heaps: Complexity 

Average Worst Case 

insert 

delete O(log n)       O(log n) 

O(log n) O(log n)  
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Heap versus BST for PriorityQueue 

n  BST can also be used to implement a priority 
queue 

n  How does worst case complexity compare? 
q  BST: O(n) - Heap: O(log n) 

n  How does average case complexity compare? 
q  BST: O(log n) if balanced - Heap: O(log n)  
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Small number of priorities 

n  A heap of queues with a queue for each 
priority value. 

n  This is more efficient for a large number of 
items and small number of priorities. 

n  Notice the connection to Radix sort.  
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HeapSort 

n  Algorithm 
q  Insert all elements (one at a time) to a heap 
q  Iteratively delete them 

n  Removes minimum/maximum value at each step 

n  Computational complexity? 
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HeapSort 

n  Alternative method (in-place): 
q  buildHeap: create a heap out of the input array: 

n  Consider the input array as a complete binary tree 
n  Create a heap by iteratively expanding the portion of the 

tree that is a heap  
q  Leaves are already heaps 
q  Start at last internal node 
q  Go backwards calling heapify with each internal node 

q  Iteratively swap the root item with last item in 
unsorted portion and rebuild 
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Building the heap 

n  WHY start at (n-2)/2? 
n  WHY go backwards? 

n  The whole method is called buildHeap 
n  One bubble down is called heapify 

for (i = (n-2)/2 down to 0) 
    //pre: the tree rooted at index is a semiheap
    //i.e., the sub trees are heaps
    heapify(i); // bubble down
    //post: the tree rooted at index is a heap
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In place heapsort using an array 
n  First build a heap out of an input array using 

buildHeap() 
n  Then partition the array into two regions; starting 

with the full heap and an empty sorted and 
stepwise growing sorted and shrinking heap. 

33 

HEAP 
Sorted (Largest  
elements in array) 



In place heapsort using an array 
n  First build a heap out of an input array 
n  Then partition the array into two regions; starting 

out with the full heap and an empty sorted and 
stepwise growing sorted and shrinking heap. 
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HEAP 
Sorted (Largest  
elements in array) 
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10 9 6 3 2 5 

9 5 6 3 2 10 

5 3 2 10 9 6 

6 5 2 3 9 10 

3 2 10 9 6 5 

2 3 10 9 6 5 

2 3 10 9 6 5 

HEAP 

SORTED 

Do it, do it 


