
 CS200: Priority Queues, Heaps

Prichard Ch. 12

CS200 - Tables and Priority Queues 1

Priority Queues

n  Characteristics
q  Items are associated with a value: priority
q  One element at a time - the one with the highest

priority

n  Uses
q  Operating systems: processes and threads
q  Network management

n  Real time traffic usually gets highest priority when
bandwidth is limited

CS200 - Tables and Priority Queues 2

Priority Queue ADT Operations

1.  Create an empty priority queue
createPQueue()

2.  Determine whether empty
pqIsEmpty():boolean

3.  Insert new item
pqInsert(in newItem:PQItemType) throws

PQueueException

4.  Retrieve and delete the item with the highest priority
pqDelete():PQItemType

CS200 – Priority Queues 3

PQ – ArrayList Implementation

n  ArrayList ordered by priority
q  pqInsert: find the correct position for add at that

position, the ArrayList.add(i,item) method will shift the
array elements to make room for the new item

q  pqDelete: remove last item (at size()-1)
q  Why did we organize it in increasing order?

20 … 3 95 95 96 99 30

size 0 1 29

CS200 – Priority Queues 4

PQ – Reference-based Implementation

n  Reference-based implementation
q  Sorted in descending order

n  Highest priority value is at the beginning of the linked list
n  pqDelete returns the item that psHead references and

changes pqHead to reference the next item.
n  pqInsert must traverse the list to find the correct position

for insertion.

96 99.2 95.8 3

pqHead …

CS200 – Priority Queues 5

PQ – BST Implementation
n  Binary search tree

q  Where is the highest
value of the nodes?

q  pqInsert O(height)
n  at a new leaf, e.g.30

q  pqDelete O(height)
n  need to remove the max
n  max has at most one child

95

99 90

20

3

96

CS200 – Priority Queues 6

The problem with BST

n  BST can get unbalanced (height = O(n)) so in
the worst case pqInsert and pqDelete can get
O(n).

n  A more balanced tree structure would be better.
n  What is a balanced binary tree structure?

q  Height of any node’s right sub-tree differs from left
sub-tree by 0 or 1

n  A complete binary tree is balanced, and it is
easy to put the nodes in an array.

CS200 – Priority Queues 7

Complete Binary Tree

8

Level-by-level numbering of a complete binary tree, NOTE 0 based!

0:Jane

1:Bob 2:Tom

3:Alan 4:Ellen 5:Nancy

What is the parent
 child index relationship?

CS200 - Trees

left child i: at 2*i+1

right child i: at 2*(i+1)

lparent i: at (i-1)/2

Heap - Definition

n  A maximum heap (maxheap) is a complete
binary tree that satisfies the following:
q  It is an empty tree
 or it has the heap property:

n  Its root contains a key greater or equal to the keys of
its children

n  Its left and right sub-trees are also maxheaps

q  A minheap has the root less or equal children,
and left and right sub trees are also minheaps

CS200 – Priority Queues 9

maxHeap Property Implications

n  Implications of the heap property:
q  The root holds the maximum value (global property)
q  Values in descending order on every path from root

to leaf

n  Heap is NOT a binary search tree, as in a BST the
nodes in the right sub tree of the root are larger
than the root

CS200 – Priority Queues 10

Examples

Satisfies heap
property
AND
Complete

Satisfies heap
property BUT
Not complete

Does not
satisfy heap
property AND
Not complete

50

25 20

10 15 5

30

25 5

10

15

20

30

20 15

10 5 25

CS200 – Priority Queues 11

Heap ADT
createHeap() // create empty heap

heapIsEmpty():boolean
// determines if empty

heapInsert(in newItem:HeapItemType)
throws HeapException
/* inserts newItem based on its search key.
 Throws exception if heap full
This may not happen if e.g.implemented
with an ArrayList */

heapDelete():HeapItemType
// retrieves and then deletes heap’s root
// item which has largest search key

CS200 – Priority Queues 12

Array(List) Implementation

50

25 20

10 15 5

50
20
25
10
15
5

0

1

2

3

4

5

CS200 –Priority Queues 13

Array(List) Implementation

n  Traversal items:
q  Root at position 0
q  Left child of position i at position 2*i+1
q  Right child of position i at position 2*(i+1)
q  Parent of position i at position (i-1)/2
 (integer division)

CS200 – Priority Queues 14

Heap Operations - heapInsert

n  Step 1: put a new value into first open position
(maintaining completeness), i.e. at the end

n  but now we potentially violated the heap property,
so:

n  Step 2: bubble values up

q  Re-enforcing the heap property

q  Swap with parent until in the right place

CS200 – Priority Queues 15

Insertion into a heap (Insert 15)

9

6 5

3 2 15

Insert 15

CS200 – Priority Queues 16

bubble up

Insertion into a heap (Insert 15)

9

6

5

3 2

CS200 – Priority Queues 17

15

bubble up

Insertion into a heap (Insert 15)

15

6

5

3 2

CS200 – Priority Queues 18

9

Heap operations – heapDelete

n  Step 1: always remove value at root, the max/min is
at root.

n  Step 2: substitute with rightmost leaf of bottom level
to fill the void by removing the very last element in
the array.

n  Step 3: percolate / bubble down to satisfy heap
property.
q  Swap with maximum child as necessary, until in place

q  this is called HEAPIFY

 CS200 – Priority Queues 19

Deletion from a heap

5

9

3 2

10

6

Delete 10
Place last node in root

CS200 – Priority Queues 20

9

5

3 2

6

CS200 – Priority Queues 21

bubble down
heapify
draw the heap

5

9

3 2

6

CS200 – Priority Queues 22

Array-based Heaps: Complexity

Average Worst Case

insert

delete O(log n) O(log n)

O(log n) O(log n)

CS200 – Priority Queues 23

Heap versus BST for PriorityQueue

n  BST can also be used to implement a priority
queue

n  How does worst case complexity compare?
q  BST: O(n) - Heap: O(log n)

n  How does average case complexity compare?
q  BST: O(log n) if balanced - Heap: O(log n)

CS200 – Priority Queues 24

Small number of priorities

n  A heap of queues with a queue for each
priority value.

n  This is more efficient for a large number of
items and small number of priorities.

n  Notice the connection to Radix sort.

CS200 – Priority Queues 25

HeapSort

n  Algorithm
q  Insert all elements (one at a time) to a heap
q  Iteratively delete them

n  Removes minimum/maximum value at each step

n  Computational complexity?

CS200 – Priority Queues 26

HeapSort

n  Alternative method (in-place):
q  buildHeap: create a heap out of the input array:

n  Consider the input array as a complete binary tree
n  Create a heap by iteratively expanding the portion of the

tree that is a heap
q  Leaves are already heaps
q  Start at last internal node
q  Go backwards calling heapify with each internal node

q  Iteratively swap the root item with last item in
unsorted portion and rebuild

CS200 –Priority Queues 27

Building the heap

n  WHY start at (n-2)/2?
n  WHY go backwards?

n  The whole method is called buildHeap
n  One bubble down is called heapify

for (i = (n-2)/2 down to 0)
 //pre: the tree rooted at index is a semiheap
 //i.e., the sub trees are heaps
 heapify(i); // bubble down
 //post: the tree rooted at index is a heap

CS200 – Priority Queues 28

CS200 – Priority Queues 29

6

3 5

10 9 2

6 3 5 9 2 10

CS200 – Priority Queues 30

6

3 10

5 9 2

CS200 – Priority Queues 31

6

9 10

5 3 2

CS200 –Priority Queues 32

10

9 6

5 3 2

10 9 6 3 2 5

In place heapsort using an array
n  First build a heap out of an input array using

buildHeap()
n  Then partition the array into two regions; starting

with the full heap and an empty sorted and
stepwise growing sorted and shrinking heap.

33

HEAP
Sorted (Largest
elements in array)

In place heapsort using an array
n  First build a heap out of an input array
n  Then partition the array into two regions; starting

out with the full heap and an empty sorted and
stepwise growing sorted and shrinking heap.

34

HEAP
Sorted (Largest
elements in array)

35

10 9 6 3 2 5

9 5 6 3 2 10

5 3 2 10 9 6

6 5 2 3 9 10

3 2 10 9 6 5

2 3 10 9 6 5

2 3 10 9 6 5

HEAP

SORTED

Do it, do it

