
 CS200: Graphs 

Prichard Ch. 14 
Rosen Ch. 10 
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Graphs 

   What can this 
represent? 

n  A computer 
network 

n  Abstraction of 
a map 

n  Social network 

A collection of  
nodes and edges 
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Directed Graphs 

   Sometimes we 
want to represent 
directionality: 

n  Unidirectional 
network 
connections 

n  One way streets 
n  The web 

A collection of  
nodes and 
directed edges 
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Graphs/Networks Around Us 
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http://noduslabs.com/wp-content/uploads/2011/12/
figure-5-meaning-circulation.png 

http://lin-ear-th-inking.blogspot.com/2010/12/
visualizing-geodetic-information-with.html 



Graph  Terminology 

Vertices/ 
Nodes 
 

Edges 

Two vertices (or nodes) 
are adjacent if they are 
connected by an edge. 
An edge is incident on two 
vertices, an edge e can 
be represented by two 
vertices (u,v) 
Degree of a vertex or 
node: number of edges 
incident on it 
 

G=(V, E) 

v 

u 

e 

Vertices Edges 
 

Graph terminology:  
 14.1 in Prichard, 
 10.1 in Rosen 
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Undirected Graphs 

n  Undirected graph.  G = (V, E) 
q  V = set of nodes. 
q  E = set of edges between pairs of nodes. 
q  Captures pairwise relationship between objects. 
q  Graph size parameters:  n = |V|, m = |E|. 

V = { 1, 2, 3, 4, 5, 6, 7, 8 } 
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } 

n = 8 
m = 11 
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Directed Graphs 

n  Directed graph.  G = (V, E) 
q  Edge (u, v) goes from node u to node v. 

 
n  Example.  Web graph - hyperlink points from one web 

page to another. 
q  Modern web search engines exploit hyperlink structure 

to rank web pages by importance (pageRank). 



Graph definitions 

Graph G = (V, E) , V: set of nodes  or vertices,  
E: set of edges (pairs of nodes).  
In an undirected graph, edges are unordered pairs (sets) 
of nodes.  In a directed graph edges are ordered pairs  
(2-tuples) of nodes. 
Path: sequence of nodes (v0..vn)  s.t.  ∀i: (vi ,vi+1) is an 
edge. Path length: number of edges in the path, or sum of 
weights. Simple path: all nodes distinct.  
Cycle: path with first and last node equal. Acyclic graph: 
graph without cycles.  DAG: directed acyclic graph.  
Two nodes are adjacent if there is an edge between them. 
In a complete graph all nodes in the graph are adjacent.  



More definitions 

 
An undirected graph is connected if for all nodes vi and vj 
there is a path from vi to  vj .  
  
G’(V’, E’) is a sub-graph of G(V,E) if   V’⊆V and E’⊆ E 
The sub-graph of G induced by V’ has all the edges  
   (u,v) ∈ E such that u ∈ V’ and v ∈ V’. 
 
In a weighted graph the edges have a weight (cost, length,..) 
associated with them. 



induced  
subgraph 

Graph  Terminology 

A subgraph of a graph G = (V,E) 
is a graph (V’,E’) such that V’ 
is a subset of V and, E’ is a  
subset of E 
 
The sub-graph of G induced  
by V’ has all the edges  
(u,v) ∈ E such that  
u ∈ V’ and v ∈ V’. 
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Question 

n  A Tree is a subtype (special type) of Graph. 
A.  True 
B.  False 
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Paths 
n  Path: a sequence of edges, 

e.g. ((v1,v2), (v2,v3), (v3,v4)) s.t. 
the first node in the next edge 
is the second node in the 
previous edge. 

n  A simple path passes through 
a vertex only once. 

n  (e1, e2, e3) is a simple path of 
length 3 from v1 to v4 

n  A path can be represented by 
a sequence of vertices, here 
(v1,v2,v3,v4) 

v1 

v4 

v2 

v3 

e1 

e2 

e3 
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Graph  Terminology 
Self loop (loop):  an edge that 
connects a vertex to itself 
 
(Simple) Graph: no self loops 
and no two edges connect the 
same vertices (E is a set, so no 
multiples). We are mostly 
thinking about these. 
 
Multigraph: may have multiple 
edges connecting the same 
vertices (not a graph: E is a set 
in graph ) 
 
Pseudograph:  multigraph with 
self-loops 
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Complete Graphs 

n  Simple graph that contains exactly one edge 
between each pair of distinct vertices.  
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Complete Graph 
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 Question 
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f e 

c b Which describes this graph? 
 
A.  Simple 
B.  Pseudograph 
C.  Cycle 
D.  Complete 
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Question 
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a f e 

c b 
Which describes this graph? 
A.  Simple 
B.  Pseudograph 
C.  Cycle 
D.  Complete 
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Cycles 

The cycle Cn, n ≥ 3, consists of n vertices 
       v1, v2, …, vn and n edges  
      {v1, v2}, {v2, v3},…, {vn-1, vn}, {vn, v1}.  
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Wheels 

n  We obtain the wheel Wn when we add an 
additional vertex to the cycle Cn, and connect 
this new vertex to each of the n vertices in Cn, 
by new edges 
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n-Cube (n-dimensional hypercube) 

Hypercube 

001 

101 
100 

000 

010 
011 

110 111 
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The degree of a vertex 

n  The degree of a vertex in an undirected 
graph  
q  the number of edges incident with it 
q  except that a loop at a vertex contributes twice to 

the degree of that vertex. 
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Example 
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a f e g 

d c b 

deg(a) = 2 
deg(b) = deg(f) = 4 

deg(d) = 1  
deg(e) = 3 
deg(g) = 0 

g is “isolated” 

d is “pendant” 
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Question 
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a f e g 

d c b 

What is the degree of c? 
A.  4 
B.  5 
C.  6 
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Directed Graphs 

Indegree:  number 
of incoming edges 

Outdegree:  number 
of outgoing edges w 

 v 
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Some Graph Theorems 

n  Handshaking: Let G=(V,E) be an undirected 
graph with m edges. Then 

n  An undirected graph has an even number of 
vertices of odd degree.  

n  Let G=(V,E) be a directed graph. Then 

2m = deg(v)
v∈V
∑

deg−(v) =
v∈V
∑ deg+(v) =

v∈V
∑ E
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Bipartite Graphs 

n  A simple graph on which the vertex set V can be 
partitioned into two disjoint sets V1 and V2 such that every 
edge connects a vertex in V1 to one in V2. 

n  Bipartite? 

n  Theorem: A simple graph is bipartite iff it is possible to 
assign one of two different colors to each vertex of the 
graph so that no two adjacent vertices are assigned the 
same color.  

a b 

c 

d 
e 

f 

g 
a b 

c 

d e 

f 
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Bipartite Graphs 

n  Assign colors 

a b 

c 

d 
e 

f 

g 
a b 

c 

d e 

f 
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Theorem: 
A graph G is bipartite iff  
it contains no odd cycle 



Question 

n  Is this graph bipartite? 
A.  Yes 
B.  No 
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a 

b 

c 
 e 

d  f 



Connected Components 

n  An undirected graph is called connected if there is a path 
between every pair of vertices of the graph.  

n  A connected component of a graph G is a connected 
subgraph of G that is not a proper subgraph of another 
connected subgraph of G.  

a 

b 

c 

d 

e 

f 

g 

G={{a,b,c,d,e,f,g},E} 

G1={{a,b,c},E1} G2={{d,e,f,g}, E2} 
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Question 

n  How many connected components does it have? 
A.  0 
B.  1 
C.  2 
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a 

b 

c 
 e 

d  f 



Connectedness in Directed Graphs 

n  A directed graph is strongly connected if 
there is a path from a to b and from b to a for 
all vertices  a and b  in the graph. 
 

n  A directed graph is weakly connected if 
there is a path between every two vertices in 
the underlying undirected graph. 
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A/B  strongly/weakly connected?  
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a 

b c 

d 

e 

a 

b c 

d 

e 

Graph A Graph B 
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Graph Data Structures -  
Adjacency Matrix 

n  Vertices 
q  row and column indices mapped to labels 
q  one vertex mapped to one index 

n  Edges 
q  entries in a square matrix 

n  size = (number of vertices)^2 
n  edge: two (vertex) indices 

q  values: 
n  boolean to indicate presence/absence of edge in 

(un)directed graph 
n  int to indicate value of weighted edge (0: no edge) 

n  useful for dense graphs 
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Adjacency Matrix Example 

A 

B C 

E 

D 

mapping of vertex 
labels to array indices 

Label Index 
A 0 
B 1 
C 2 
D 3 
E 4 

0 1 2 3 4 
0 0 1 0 1 0 
1 0 0 0 0 1 
2 1 0 0 0 0 
3 0 1 0 0 0 
4 0 0 1 0 0 

Adjacency Matrix: 
array of edges indexed 
by vertex number 
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For undirected graph,  
what would adjacency  
matrix look like? 

In a weighted  
graph, cells would  
contain weights 
 



 Question 

0 1 2 3 4 
0 0 1 1 0 0 
1 1 0 0 1 1 
2 1 0 0 0 1 
3 0 1 0 0 0 
4 0 1 1 0 0 

Adjacency Matrix: 
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Is this an undirected graph? 
A.  Yes 
B.  No 
 



Question 

0 1 2 3 4 
0 0 1 1 0 0 
1 1 0 0 1 1 
2 1 0 0 0 1 
3 0 1 0 1 0 
4 0 1 1 0 0 

Adjacency Matrix: 
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Is this a simple graph? 
A.  Yes 
B.  No 
 



Graph Data Structures -  
Adjacency List 

n  Vertices 
q  mapped to list of  adjacencies 
q  adjacency: edge  

n  Edges: lists of adjacencies 
q  linked-list of out-going edges 

per vertex 
n  useful for sparse graphs 

A 

B C 

E 

D 
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Adjacency List: Undirected Graph 

mapping of vertex 
labels to list of edges 

Index Label 

0 A 

1 B 

2 C 

3 D 

4 E 

B     C     

A 

B C 

E 

D 
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ArrayList 

ArrayLists 

D     
A     D     E     
A     E     
A     B     
B     C     



Adjacency List: Directed Graph 
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A 

B C 

E 

D 

Index Label 

0 A 

1 B 

2 C 

3 D 

4 E 

B     B     
E     
B     D     

A     
B     
C     

ArrayList 

ArrayLists 

This representation  
is used in  
Graph  
recitation  
and assignment  



Which Implementation Is Best? 

n  Which implementation best supports common 
Graph Operations: 
q  Is there an edge between vertex i and vertex j? 
q  Find all vertices adjacent to vertex j 

n  Which best uses space? 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm) 

n  Graph G(V,E) with positive weights (“distances”) 
 

n  Compute shortest distances from source vertex s 
to every other vertex in the graph 

n  Examples: Google/Apple/Navigator maps, 
network routing, laying out wires on a Printed 
Circuit Board (PCB), etc. 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm) 

n  Algorithm 
q  Stepwise create a minimal path sub tree 
    initial: source 
q  Maintain array d (minimum distance estimates) 

n  Init: d[s]=0, d[v]=∞,   v∈V-s 
n  ∞  means: yet unreachable 

q  array of nodes not yet visited with shortest distance 
to already selected nodes 

q  select minimum path distance node v, update 
neighbors 
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Dijkstra’s Algorithm 
Dijkstra(G: graph with vertices v0…vn-1 and weights w[u][v])
// computes shortest distance of vertex 0 to every other vertex
// create an empty set, call it finalizedVertexSet

d[0] = 0
for (v = 1 through n-1)

d[v] =  infinity
for (step = 2 through n)

find the smallest d[v] such that v is not in 
finalizedVertexSet

add v to finalizedVertexSet
for (all vertices u not in finalizedVertexSet) 

if (d[u] > d[v] + w[v][u]) 
d[u] = d[v] + w[v][u]
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0 s 

∞ 

b 

∞ 
c 

∞ a 

2 

7 1 

5 

2 

1 

b 

0 s 

2 

7 
c 

∞ a 

2 

7 1 

5 

2 

1 

0 s 

2 

b 

3 
c 

7 a 

2 

7 1 

5 

2 

1 0 s 

2 

b 

3 
c 

a 

2 

7 1 

5 

2 

1 4 

Do It  
Do It 



Recap: Priority Queue 

n  A Priority Queue is a data structure that 
keeps  a set of items (P,V), consisting of a 
Priority P and a Value V, in sorted order of 
priority. 

n  Possible operations:  
         insert( X(Px,Vx) ) 
        delete( X(Px,Vx) ) 
We have studied a clever data structure for 
priority queues: heaps 
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Shortest Path Algorithms  
Using a Priority Queue (Dijkstra’s Algorithm): step 1 

0 

10 

5 

10 

3 2 

1 

9 

7 

2 

5 

4 6 

8 
8 

a 

b 

c 

e 

d 
[5,c],[10,b] 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 2 

0 

8 14 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 
[7,d],[8,b],[14,e] 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 3 

0 

8 11 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 
[8,b],[11,e] 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): step 4 

0 

8 9 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 
[9,e] 
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Shortest Path Algorithms  
(Dijkstra’s Algorithm): Done 

0 

8 9 

5 7 

10 

3 2 

1 

9 

7 

2 

5 

4 6 a 

b 

c 

e 

d 
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Dijkstra’s Algorithm 

n  We have computed the shortest distances. 
n  How to obtain the shortest paths? 
 

q  At each vertex maintain predecessor on path 
(parent in the minimal path tree) 

q  From each node you can trace back to the source 
(the root of the minimal path tree) 

q  Why maintain predecessor, why not successor? 
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