
 CS200: Graphs

Prichard Ch. 14
Rosen Ch. 10

CS200 - Graphs 1

Graphs

 What can this
represent?

n  A computer
network

n  Abstraction of
a map

n  Social network

A collection of
nodes and edges

CS200 - Graphs 2

Directed Graphs

 Sometimes we
want to represent
directionality:

n  Unidirectional
network
connections

n  One way streets
n  The web

A collection of
nodes and
directed edges

CS200 - Graphs 3

Graphs/Networks Around Us

CS200 - Graphs 4

http://noduslabs.com/wp-content/uploads/2011/12/
figure-5-meaning-circulation.png

http://lin-ear-th-inking.blogspot.com/2010/12/
visualizing-geodetic-information-with.html

Graph Terminology

Vertices/
Nodes

Edges

Two vertices (or nodes)
are adjacent if they are
connected by an edge.
An edge is incident on two
vertices, an edge e can
be represented by two
vertices (u,v)
Degree of a vertex or
node: number of edges
incident on it

G=(V, E)

v

u

e

Vertices Edges

Graph terminology:
 14.1 in Prichard,
 10.1 in Rosen

CS200 - Graphs 5

6

Undirected Graphs

n  Undirected graph. G = (V, E)
q  V = set of nodes.
q  E = set of edges between pairs of nodes.
q  Captures pairwise relationship between objects.
q  Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8
m = 11

7

Directed Graphs

n  Directed graph. G = (V, E)
q  Edge (u, v) goes from node u to node v.

n  Example. Web graph - hyperlink points from one web

page to another.
q  Modern web search engines exploit hyperlink structure

to rank web pages by importance (pageRank).

Graph definitions

Graph G = (V, E) , V: set of nodes or vertices,
E: set of edges (pairs of nodes).
In an undirected graph, edges are unordered pairs (sets)
of nodes. In a directed graph edges are ordered pairs
(2-tuples) of nodes.
Path: sequence of nodes (v0..vn) s.t. ∀i: (vi ,vi+1) is an
edge. Path length: number of edges in the path, or sum of
weights. Simple path: all nodes distinct.
Cycle: path with first and last node equal. Acyclic graph:
graph without cycles. DAG: directed acyclic graph.
Two nodes are adjacent if there is an edge between them.
In a complete graph all nodes in the graph are adjacent.

More definitions

An undirected graph is connected if for all nodes vi and vj
there is a path from vi to vj .

G’(V’, E’) is a sub-graph of G(V,E) if V’⊆V and E’⊆ E
The sub-graph of G induced by V’ has all the edges
 (u,v) ∈ E such that u ∈ V’ and v ∈ V’.

In a weighted graph the edges have a weight (cost, length,..)
associated with them.

induced
subgraph

Graph Terminology

A subgraph of a graph G = (V,E)
is a graph (V’,E’) such that V’
is a subset of V and, E’ is a
subset of E

The sub-graph of G induced
by V’ has all the edges
(u,v) ∈ E such that
u ∈ V’ and v ∈ V’.

CS200 - Graphs 10

Question

n  A Tree is a subtype (special type) of Graph.
A.  True
B.  False

CS200 - Graphs 11

Paths
n  Path: a sequence of edges,

e.g. ((v1,v2), (v2,v3), (v3,v4)) s.t.
the first node in the next edge
is the second node in the
previous edge.

n  A simple path passes through
a vertex only once.

n  (e1, e2, e3) is a simple path of
length 3 from v1 to v4

n  A path can be represented by
a sequence of vertices, here
(v1,v2,v3,v4)

v1

v4

v2

v3

e1

e2

e3

CS200 - Graphs 12

Graph Terminology
Self loop (loop): an edge that
connects a vertex to itself

(Simple) Graph: no self loops
and no two edges connect the
same vertices (E is a set, so no
multiples). We are mostly
thinking about these.

Multigraph: may have multiple
edges connecting the same
vertices (not a graph: E is a set
in graph)

Pseudograph: multigraph with
self-loops

CS200 - Graphs 13

Complete Graphs

n  Simple graph that contains exactly one edge
between each pair of distinct vertices.

14

Complete Graph

CS200 - Graphs

 Question

15

f e

c b Which describes this graph?

A.  Simple
B.  Pseudograph
C.  Cycle
D.  Complete

CS200 - Graphs

Question

16

a f e

c b
Which describes this graph?
A.  Simple
B.  Pseudograph
C.  Cycle
D.  Complete

CS200 - Graphs

Cycles

The cycle Cn, n ≥ 3, consists of n vertices
 v1, v2, …, vn and n edges
 {v1, v2}, {v2, v3},…, {vn-1, vn}, {vn, v1}.

17 CS200 - Graphs

Wheels

n  We obtain the wheel Wn when we add an
additional vertex to the cycle Cn, and connect
this new vertex to each of the n vertices in Cn,
by new edges

18 CS200 - Graphs

n-Cube (n-dimensional hypercube)

Hypercube

001

101
100

000

010
011

110 111

CS200 - Graphs 19

The degree of a vertex

n  The degree of a vertex in an undirected
graph
q  the number of edges incident with it
q  except that a loop at a vertex contributes twice to

the degree of that vertex.

20 CS200 - Graphs

Example

21

a f e g

d c b

deg(a) = 2
deg(b) = deg(f) = 4

deg(d) = 1
deg(e) = 3
deg(g) = 0

g is “isolated”

d is “pendant”

CS200 - Graphs

Question

22

a f e g

d c b

What is the degree of c?
A.  4
B.  5
C.  6

CS200 - Graphs

Directed Graphs

Indegree: number
of incoming edges

Outdegree: number
of outgoing edges w

 v

CS200 - Graphs 23

Some Graph Theorems

n  Handshaking: Let G=(V,E) be an undirected
graph with m edges. Then

n  An undirected graph has an even number of
vertices of odd degree.

n  Let G=(V,E) be a directed graph. Then

2m = deg(v)
v∈V
∑

deg−(v) =
v∈V
∑ deg+(v) =

v∈V
∑ E

CS200 - Graphs 24

Bipartite Graphs

n  A simple graph on which the vertex set V can be
partitioned into two disjoint sets V1 and V2 such that every
edge connects a vertex in V1 to one in V2.

n  Bipartite?

n  Theorem: A simple graph is bipartite iff it is possible to
assign one of two different colors to each vertex of the
graph so that no two adjacent vertices are assigned the
same color.

a b

c

d
e

f

g
a b

c

d e

f

CS200 - Graphs 25

Bipartite Graphs

n  Assign colors

a b

c

d
e

f

g
a b

c

d e

f

CS200 - Graphs 26

Theorem:
A graph G is bipartite iff
it contains no odd cycle

Question

n  Is this graph bipartite?
A.  Yes
B.  No

CS200 - Graphs 27

a

b

c
 e

d f

Connected Components

n  An undirected graph is called connected if there is a path
between every pair of vertices of the graph.

n  A connected component of a graph G is a connected
subgraph of G that is not a proper subgraph of another
connected subgraph of G.

a

b

c

d

e

f

g

G={{a,b,c,d,e,f,g},E}

G1={{a,b,c},E1} G2={{d,e,f,g}, E2}
CS200 - Graphs 28

Question

n  How many connected components does it have?
A.  0
B.  1
C.  2

CS200 - Graphs 29

a

b

c
 e

d f

Connectedness in Directed Graphs

n  A directed graph is strongly connected if
there is a path from a to b and from b to a for
all vertices a and b in the graph.

n  A directed graph is weakly connected if
there is a path between every two vertices in
the underlying undirected graph.

30 CS200 - Graphs

A/B strongly/weakly connected?

31

a

b c

d

e

a

b c

d

e

Graph A Graph B

CS200 - Graphs

Graph Data Structures -
Adjacency Matrix

n  Vertices
q  row and column indices mapped to labels
q  one vertex mapped to one index

n  Edges
q  entries in a square matrix

n  size = (number of vertices)^2
n  edge: two (vertex) indices

q  values:
n  boolean to indicate presence/absence of edge in

(un)directed graph
n  int to indicate value of weighted edge (0: no edge)

n  useful for dense graphs
CS200 - Graphs 32

Adjacency Matrix Example

A

B C

E

D

mapping of vertex
labels to array indices

Label Index
A 0
B 1
C 2
D 3
E 4

0 1 2 3 4
0 0 1 0 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0

Adjacency Matrix:
array of edges indexed
by vertex number

CS200 - Graphs 33

For undirected graph,
what would adjacency
matrix look like?

In a weighted
graph, cells would
contain weights

 Question

0 1 2 3 4
0 0 1 1 0 0
1 1 0 0 1 1
2 1 0 0 0 1
3 0 1 0 0 0
4 0 1 1 0 0

Adjacency Matrix:

CS200 - Graphs 34

Is this an undirected graph?
A.  Yes
B.  No

Question

0 1 2 3 4
0 0 1 1 0 0
1 1 0 0 1 1
2 1 0 0 0 1
3 0 1 0 1 0
4 0 1 1 0 0

Adjacency Matrix:

CS200 - Graphs 35

Is this a simple graph?
A.  Yes
B.  No

Graph Data Structures -
Adjacency List

n  Vertices
q  mapped to list of adjacencies
q  adjacency: edge

n  Edges: lists of adjacencies
q  linked-list of out-going edges

per vertex
n  useful for sparse graphs

A

B C

E

D

CS200 - Graphs 36

Adjacency List: Undirected Graph

mapping of vertex
labels to list of edges

Index Label

0 A

1 B

2 C

3 D

4 E

B C

A

B C

E

D

CS200 - Graphs 37

ArrayList

ArrayLists

D
A D E
A E
A B
B C

Adjacency List: Directed Graph

CS200 - Graphs 38

A

B C

E

D

Index Label

0 A

1 B

2 C

3 D

4 E

B B
E
B D

A
B
C

ArrayList

ArrayLists

This representation
is used in
Graph
recitation
and assignment

Which Implementation Is Best?

n  Which implementation best supports common
Graph Operations:
q  Is there an edge between vertex i and vertex j?
q  Find all vertices adjacent to vertex j

n  Which best uses space?

CS200 - Graphs 39

Shortest Path Algorithms
(Dijkstra’s Algorithm)

n  Graph G(V,E) with positive weights (“distances”)

n  Compute shortest distances from source vertex s
to every other vertex in the graph

n  Examples: Google/Apple/Navigator maps,
network routing, laying out wires on a Printed
Circuit Board (PCB), etc.

CS200 - Graphs 40

Shortest Path Algorithms
(Dijkstra’s Algorithm)

n  Algorithm
q  Stepwise create a minimal path sub tree
 initial: source
q  Maintain array d (minimum distance estimates)

n  Init: d[s]=0, d[v]=∞, v∈V-s
n  ∞ means: yet unreachable

q  array of nodes not yet visited with shortest distance
to already selected nodes

q  select minimum path distance node v, update
neighbors

CS200 - Graphs 41

Dijkstra’s Algorithm
Dijkstra(G: graph with vertices v0…vn-1 and weights w[u][v])
// computes shortest distance of vertex 0 to every other vertex
// create an empty set, call it finalizedVertexSet

d[0] = 0
for (v = 1 through n-1)

d[v] = infinity
for (step = 2 through n)

find the smallest d[v] such that v is not in
finalizedVertexSet

add v to finalizedVertexSet
for (all vertices u not in finalizedVertexSet)

if (d[u] > d[v] + w[v][u])
d[u] = d[v] + w[v][u]

CS200 - Graphs 42

0 s

∞

b

∞
c

∞ a

2

7 1

5

2

1

b

0 s

2

7
c

∞ a

2

7 1

5

2

1

0 s

2

b

3
c

7 a

2

7 1

5

2

1 0 s

2

b

3
c

a

2

7 1

5

2

1 4

Do It
Do It

Recap: Priority Queue

n  A Priority Queue is a data structure that
keeps a set of items (P,V), consisting of a
Priority P and a Value V, in sorted order of
priority.

n  Possible operations:
 insert(X(Px,Vx))
 delete(X(Px,Vx))
We have studied a clever data structure for
priority queues: heaps

CS200 - Graphs 44

Shortest Path Algorithms
Using a Priority Queue (Dijkstra’s Algorithm): step 1

0

10

5

10

3 2

1

9

7

2

5

4 6

8
8

a

b

c

e

d
[5,c],[10,b]

CS200 - Graphs 45

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 2

0

8 14

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d
[7,d],[8,b],[14,e]

CS200 - Graphs 46

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 3

0

8 11

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d
[8,b],[11,e]

CS200 - Graphs 47

Shortest Path Algorithms
(Dijkstra’s Algorithm): step 4

0

8 9

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d
[9,e]

CS200 - Graphs 48

Shortest Path Algorithms
(Dijkstra’s Algorithm): Done

0

8 9

5 7

10

3 2

1

9

7

2

5

4 6 a

b

c

e

d

CS200 - Graphs 49

Dijkstra’s Algorithm

n  We have computed the shortest distances.
n  How to obtain the shortest paths?

q  At each vertex maintain predecessor on path
(parent in the minimal path tree)

q  From each node you can trace back to the source
(the root of the minimal path tree)

q  Why maintain predecessor, why not successor?

CS200 - Graphs 50

