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Fun and Games with Graphs
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Do Dijkstra’s Shortest Paths Algorithm, Source: S
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Do Prim’s Minimum Spanning Tree Algorithm, Source: S
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‘ Bridges of Konigsberg Problem -f-ﬂi]}

river bank A

island

NEaTE

river bank ©

Is it possible to travel across every bridge
without crossing any bridge more than once?

http://yeskarthi.wordpress.com/2006/07/31/euler-and-the-bridges-of-konigsberg/
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‘ Eulerian paths/circuits
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s Eulerian path: a path that visits each edge in
the graph once

s Eulerian circuit: a cycle that visits each edge in
the graph once

m Is there a simple criterion that allows us to
determine whether a graph has an Eulerian
circuit or path?
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Example: Does any graph have oai
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an Fulerian path?4
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Example: Does any graph have oai
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an Fulerian circui
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Example: Does any graph have an  “gg* ",

Fulerian circuit or path?
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‘ Theorems about
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Eulerian Paths & Circuits

m Theorem: A connected multigraph has an
Eulerian path iff it has exactly zero or two
vertices of odd degree.

s [heorem: A connected multigraph, with at
least two vertices, has an Eulerian circuit iff
each vertex has an even degree.

Demo:
nttp://www.mathcove.net/petersen/lessons/get-

esson?les=23
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Hamiltonian Paths/Circuits

path/circuit that visits every
vertex exactly once.

m Defined for directed and
undirected graphs
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‘ Circuits (cont.) L
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o path that begins at vertex

Vv, passes through every vertex in the graph
exactly once, and ends at v.

o http://www.mathcove.net/petersen/lessons/get-
lesson?les=24
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Does any graph have a Hamiltonian “gg*= .,

circuit or a Hamiltonian path? LELICE
a b
a‘ b
¢ a b
d C
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‘ Hamiltonian Paths/Circuits s
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m |s there an efficient way to determine whether
a graph has a Hamiltonian circuit?
a NO!

o This problem belongs to a class of problems for
which it is believed there is no efficient (polynomial

running time) algorithm.
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‘ The Traveling Salesman Problem ==
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TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that

visits each city exactly once.
‘@.ﬁ y y

-

¥
" ’

_13,509 cities and towns in the US that have more than 500 residents _
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‘ Using Hamiltonian Circuits
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Examine all possible Hamiltonian circuits and
select one of minimum total length

s With n cities..

o (n-1)! Different Hamiltonian circuits

o Ignore the reverse ordered circuits
o (n-1)1/2

m \With 50 cities

12,413,915,592,536,072,670,862,289,047,373,3
75,038,521,486,354,677,760,000,000,000
routes
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TSP

= How would a approximating algorithm for TSP

work’? =L
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Local search:
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71,009 Cities in China cs200- Graphs




‘ Planar Graphs

m YOou are designing a
microchip — connections
between any two units
cannot cross

CS200 - Graphs
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‘ Planar Graphs mE o
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m You are designing a planar

microchip — connections @ e
between any two units 0.

cannot cross 9

m The graph describing the

_ non-planar
chip must be planar

http://en.wikipedia.org/wiki/Planar_graph
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‘ Are these graphs planar?
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| Chip Design e

= You want more than
planarity: the lengths of
the connections need to be
as short as possible (faster,
and less heat is generated)

m We are now designing 3D
chips, less constraint w.r.t.
planarity, and shorter
distances, but harder to

build.
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‘ Graph Coloring
m A coloring of a simple graph is the
assignment of a color to each vertex of the
graph so that no two adjacent vertices are
assigned the same color
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‘ Map and graph
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‘ Chromatic number

m [he least number of colors needed for a
coloring of this graph.

s The chromatic number of a graph G is
denoted by y(G)
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‘ The four color theorem

s The chromatic number of a planar graph is no
greater than four

m This theorem was proved by a (theorem
prover) program!
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‘ Example
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