
CS200:  
    Recursion and induction 
        (recap from cs161) 

Prichard Ch. 6.1 & 6.3 
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Backtracking 

n  Problem solving technique that involves 
moves: guesses at a solution. 

n  Depth First Search: in case of failure retrace 
steps and try a new move in a state with still 
unexplored guesses 

Think of it as walking through a tree shaped state space. 
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3 guesses here 
2 guesses in each state here 

leaf states can fail (F) or succeed (S) 
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Depth First Search 

n  Looking for a path out of 
the maze 

n  Strategy:   
q  Prioritize directions:  right, 

straight or left. 
q  At a dead end “backtrack” 

and try a different direction 
 
n  Recursive solution? 
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The Eight Queens Problem 

Place 8 Queens! 
No queen can attack 
any other queens. 
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Solution with recursion and backtracking 

placeQueen (in currColumn:integer)!
if ( currColumn > 8) {  

The problem is solved!
} else {!
   while (unconsidered squares exist in currColumn and the!
          problem is unsolved) {!
       Determine if the next square is safe.!
       if (such a square exists){!
!       place a queen in the square!
!       placeQueens(currColumn+1) // try next column!

          if (no queen safe in currColumn+1) {!
! !          remove queen from currColumn !
! ! !   try the next square in that column!

          }  !
       }!
    }!
}!
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Example 

Q 

Q 

Q 

Q 

Q 

1     2    3    4    5    6    7    8  

1 

3 
5 
2 
4 

CS200 - Recursion 



9 

Hit ‘Dead End’ 
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Backtrack 
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If you go 
on, this 
will fail 
and you  
need to  
back 
track 
to col 4 



Backtrack: an 8 queens solution 
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The only symmetric one 
 
There are 11 more  
“fundamental” solutions 
 
see: 
 
wikipedia.org/wiki/ 
Eight_queens_puzzle 



Questions 

n  What is the maximum depth of the  run time 
stack for 8 Queens? 

 
n  How big could the call tree get? 
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Recursion 

n  Specifies a solution to one or more base 
cases 

n  Then demonstrates how to derive the 
solution to a problem of an arbitrary size  
q  From solutions to smaller sized problems. 
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Correctness of the Recursive Factorial 
Method 

Specification of the 
problem 

(e.g., Mathematical 
definition, SW 
requirements) Algorithm 

(e.g., pseudo 
code) 

Does your algorithm satisfy the specification of the problem? 

CS200 - Recursion 



15 

Correctness of the Recursive Factorial 
Method 

Definition of Factorial 
        factorial(n) = n (n – 1) (n – 2) … 1  for any integer n > 0 

     factorial(0) = 1 
 
Definition of method fact(N) 
        1: fact (in n: integer): integer!

2:     if (n is 0) {!
3:        return 1!
4:     } else {!
5:        return n* fact(n-1)!
6:     }!
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Inductive proof fact computes the 
factorial of its argument. 
Basis step: 

  fact(0) = 1 
Inductive Step: 
Show that for an arbitrary positive integer k, 
        if fact(k) returns k!, then 
          fact(k+1) returns (k+1)! 
 
do it do it 
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The Towers of Hanoi Example 
 
n  Move pile of disks from source to destination  
n  Only one disk may be moved at a time. 
n  No disk may be placed on top of a smaller disk. 
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States in the Towers of Hanoi 

Source Destination Spare 
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Recursive Solution 
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// pegs are numbers, via is computed 
// number of moves are counted 
// empty base case 
public void hanoi(int n, int from, int to){ 
   if (n>0) { 
      int via = 6 - from - to; 
      hanoi(n-1,from, via); 
      System.out.println("move disk " + n + " from " + from + " to " + to); 
      hanoi(n-1,via,to); 
    } 
} 

let’s run it and 
   study the move pattern, and count the number of moves 
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Cost of Towers of Hanoi 

n  How many moves does hanoi(n) make? 
n  from the recursive code: 
        moves(1) = 1 
        moves(N) = moves(N-1)+1+moves(N-1) (if N>1) 

n  By inspection, we can infer that a closed form 
formula for the number of moves: 
     moves(N) = 2N - 1 (for all N>=1)  

n  Can we prove it? 
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Proof 
n  Basis Step 

q  Show that the property is true for N = 1.  
    21 - 1 = 1, which is consistent with the recurrence 
relation’s specification that moves(1) = 1 

n  Inductive Step 
q  Property is true for an arbitrary k è property is true for 

k+1 
q  Assume that the property is true for N = k 
      moves(k) = 2k-1 

q  Show that the property is true for N = k + 1 
q  Do it, do it 
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Proof – cont. 

n  moves(k+1) = 2 * moves(k) + 1   
                      = 2 * (2k -1) +1 

                        = 2*2k - 2 +1 = 2k+1-1  
 
Therefore the inductive proof is complete. 
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One more example: 
    0+1+2…+n = n(n+1)/2     n=0,1,2…. 

base: 0 = 0*1/2=0  Check 
step: assume:       0+1+2…+k = k(k+1)/2 
show that  0+1+2…+k+ (k+1) = (k+1)(k+2)/2 
  
0+1+2…+k+ (k+1) = k(k+1)/2 + (k+1) =  
 k(k+1)/2 + 2(k+1)/2 = k(k+1)/2 + 2(k+1)/2  = 
 (k+2)(k+1)/2 =  (k+1)(k+2)/2  
                                                     Check 
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