
CS200:
 Recursion and induction
 (recap from cs161)

Prichard Ch. 6.1 & 6.3

1 CS200 - Recursion

2 CS200 - Recursion

3

Backtracking

n  Problem solving technique that involves
moves: guesses at a solution.

n  Depth First Search: in case of failure retrace
steps and try a new move in a state with still
unexplored guesses

Think of it as walking through a tree shaped state space.

CS200 - Recursion

3 guesses here
2 guesses in each state here

leaf states can fail (F) or succeed (S)

CS200 - Recursion 4

F F F S F F F F F S F F F F F S F F

F F F S F F F F F S F F F F F S F F

F F F S F F Found!

Depth First Search

n  Looking for a path out of
the maze

n  Strategy:
q  Prioritize directions: right,

straight or left.
q  At a dead end “backtrack”

and try a different direction

n  Recursive solution?

5 CS200 - Recursion

^

6

The Eight Queens Problem

Place 8 Queens!
No queen can attack
any other queens.

CS200 - Recursion

7

Solution with recursion and backtracking

placeQueen (in currColumn:integer)!
if (currColumn > 8) {  

The problem is solved!
} else {!
 while (unconsidered squares exist in currColumn and the!
 problem is unsolved) {!
 Determine if the next square is safe.!
 if (such a square exists){!
! place a queen in the square!
! placeQueens(currColumn+1) // try next column!

 if (no queen safe in currColumn+1) {!
! ! remove queen from currColumn !
! ! ! try the next square in that column!

 } !
 }!
 }!
}!

CS200 - Recursion

8

Example

Q

Q

Q

Q

Q

1 2 3 4 5 6 7 8

1

3
5
2
4

CS200 - Recursion

9

Hit ‘Dead End’

Q

Q

Q

Q

Q

1 2 3 4 5 6 7 8

1

3
5
2
4 8

CS200 - Recursion

10

Backtrack

Q

Q

Q

Q

Q

1 2 3 4 5 6 7 8

1

3
5
2
8
7
2

CS200 - Recursion

If you go
on, this
will fail
and you
need to
back
track
to col 4

Backtrack: an 8 queens solution

CS200 - Recursion 11

Q

Q

Q

Q

Q

Q

Q

Q

The only symmetric one

There are 11 more
“fundamental” solutions

see:

wikipedia.org/wiki/
Eight_queens_puzzle

Questions

n  What is the maximum depth of the run time
stack for 8 Queens?

n  How big could the call tree get?

CS200 - Recursion 12

13

Recursion

n  Specifies a solution to one or more base
cases

n  Then demonstrates how to derive the
solution to a problem of an arbitrary size
q  From solutions to smaller sized problems.

CS200 - Recursion

14

Correctness of the Recursive Factorial
Method

Specification of the
problem

(e.g., Mathematical
definition, SW
requirements) Algorithm

(e.g., pseudo
code)

Does your algorithm satisfy the specification of the problem?

CS200 - Recursion

15

Correctness of the Recursive Factorial
Method

Definition of Factorial
 factorial(n) = n (n – 1) (n – 2) … 1 for any integer n > 0

 factorial(0) = 1

Definition of method fact(N)
 1: fact (in n: integer): integer!

2: if (n is 0) {!
3: return 1!
4: } else {!
5: return n* fact(n-1)!
6: }!

CS200 - Recursion

16

Inductive proof fact computes the
factorial of its argument.
Basis step:

 fact(0) = 1
Inductive Step:
Show that for an arbitrary positive integer k,
 if fact(k) returns k!, then
 fact(k+1) returns (k+1)!

do it do it

CS200 - Recursion

17

The Towers of Hanoi Example

n  Move pile of disks from source to destination
n  Only one disk may be moved at a time.
n  No disk may be placed on top of a smaller disk.

CS200 - Recursion

18

States in the Towers of Hanoi

Source Destination Spare
CS200 - Recursion

19

Recursive Solution

CS200 - Recursion

// pegs are numbers, via is computed
// number of moves are counted
// empty base case
public void hanoi(int n, int from, int to){
 if (n>0) {
 int via = 6 - from - to;
 hanoi(n-1,from, via);
 System.out.println("move disk " + n + " from " + from + " to " + to);
 hanoi(n-1,via,to);
 }
}

let’s run it and
 study the move pattern, and count the number of moves

20

Cost of Towers of Hanoi

n  How many moves does hanoi(n) make?
n  from the recursive code:
 moves(1) = 1
 moves(N) = moves(N-1)+1+moves(N-1) (if N>1)

n  By inspection, we can infer that a closed form
formula for the number of moves:
 moves(N) = 2N - 1 (for all N>=1)

n  Can we prove it?

CS200 - Recursion

21

Proof
n  Basis Step

q  Show that the property is true for N = 1.
 21 - 1 = 1, which is consistent with the recurrence
relation’s specification that moves(1) = 1

n  Inductive Step
q  Property is true for an arbitrary k è property is true for

k+1
q  Assume that the property is true for N = k
 moves(k) = 2k-1

q  Show that the property is true for N = k + 1
q  Do it, do it

CS200 - Recursion

22

Proof – cont.

n  moves(k+1) = 2 * moves(k) + 1
 = 2 * (2k -1) +1

 = 2*2k - 2 +1 = 2k+1-1

Therefore the inductive proof is complete.

CS200 - Recursion

One more example:
 0+1+2…+n = n(n+1)/2 n=0,1,2….

base: 0 = 0*1/2=0 Check
step: assume: 0+1+2…+k = k(k+1)/2
show that 0+1+2…+k+ (k+1) = (k+1)(k+2)/2

0+1+2…+k+ (k+1) = k(k+1)/2 + (k+1) =
 k(k+1)/2 + 2(k+1)/2 = k(k+1)/2 + 2(k+1)/2 =
 (k+2)(k+1)/2 = (k+1)(k+2)/2
 Check

CS200 - Recursion 23

