
 CS200: Trees

Rosen Ch. 11.1 & 11.3
Prichard Ch. 11

1 CS200 - Trees

Trees

CS200 - Trees 2

A

B C D

Tree grows top to bottom!

A node has only one
parent!
Except the root: zero
 parents

E F

subtree

Tree Terminology

Node

Edge

parent

root

leaf

interior node

path

Degree:
 node: # children
 tree: max node degree

Depth/Level:
 root: 1
 child: level
 parent + 1

Height: max level

child

The parent child relationship is generalized to the
relationship of ancestor and descendant All defs are in Prichard

3 CS200 - Trees

Applications – File System

CS200 - Trees 4

Applications - Parse Trees
Used in compilers to check syntax

assignment
statement

identifier = expression ;

x
+ expression expression

y

identifier number

1
5 CS200 - Trees

Applications – Expression Tree

CS200 - Trees 6

Predictively parsing expressions
 expr = expr “+” term | term
 term = term “*” factor | factor
 factor = number | “(“ expr “)”

For each non-terminal (expr, term, factor) create a
method recognizing that non-terminal.
That method implements the alternatives on the
RHS of its production.

When encountering a terminal token, check whether it
is on input, and read passed it (“consume it”).
When encountering a non-terminal, call its method.

CS200 - Trees 7

What’s the problem?

Predictively parsing expressions

 expr = expr “+” term | term
 term = term “*” factor | factor
 factor = number | “(“ expr “)”
For each non-terminal (expr, term, factor) create a method recognizing
that non-terminal. That method implements the alternatives on the
RHS of its production. When encountering a terminal token, check
whether it is on input, and read passed it. When encountering a non-
terminal, call its method.

CS200 - Trees 8

What’s the solution?

The grammar is left recursive: expr will call expr will call
expr etc. without ever reading any tokens

Alternative, iterative grammar for expressions

 expr = term (“+” term)*
 term = factor (“*” factor)*
 factor = number | “(“ expr “)”

 (…)* is implemented with a while loop

 Let’s go check out some code:
 Parsing infix expressions

CS200 - Trees 9

Binary Trees
n  A binary tree is a set T of nodes such that either

q  T is empty, or
q  T is partitioned into three disjoint subsets:

n  A single node r, the root
n  Two binary trees, the left and right subtrees of r

right subtree

root

left subtree

10 CS200 - Trees

Tree Terminology

n  Level/depth of a node n in a tree T
q  If n is the root of T, it is at level 1
q  If n is not the root of T, its level is 1 greater

than the level of its parent

n  Height: max level

Starting at level 1 and counting nodes for path
length is the Prichard style (Rosen starts at 0)

11 CS200 - Trees

Height of a Binary Tree

n  If T is empty, its height is 0.

n  If T is a non empty binary tree,
 height(T) = 1 + max{height(TL), height(TR)}	

12

root

TL TR

Height of TL

Height of TR

CS200 - Trees

Binary trees with same nodes
but different heights

13

C

A
B

D E

F

G

A

C

B

D

E

F

G

A
B C

D E F G

Tree A

Tree B

Tree D

CS200 - Trees

Operations of the Binary Tree

n  Create Tree consisting of a Leaf Node

n  Create Tree with one or two existing subtrees

n  Add and remove node and subtrees
n  Retrieve or set the data in the root

n  Determine whether the tree is empty

14 CS200 - Trees

Possible operations

15

Root!
Left subtree!
Right subtree

createBinaryTree()!
makeEmpty()!
isEmpty()!
getRootItem()!
setRootItem()!
attachLeft()!
attachRight()!
attachLeftSubtree()!
attachRightSubtree()!
detachLeftSubtree()!
detachRightSubtree()!
getLeftSubtree()!
getRightSubtree()!

CS200 - Trees

Example
// Draw these trees!
!
tree1.setRootItem(“F”)!
tree1.attachLeft(“G”)!

tree2.setRootItem(“D”)!
tree2.attachLeftSubtree(tree1)!

tree3.setRootItem(“B”)!
tree3.attachLeftSubtree(tree2)!
tree3.attachRight(“E”)!

tree4.setRootItem(“C”)!

binTree.createBinaryTree(“A”, tree3, tree4)!
!

16 CS200 - Trees

TreeNode

leftChild rightChild

item

root

leftChild rightChild

item

leftChild rightChild

item

A reference-based representation

17

Tree

CS200 - Trees

Tree Node

18

public TreeNode<T> {!
!T item;!
!TreeNode<T> leftChild;!
!TreeNode<T> rightChild;!

!
!public TreeNode(T newItem){!
! item = newItem;!

 leftChild = null;!
 rightChild = null;!

!}!
!

!public TreeNode(T newItem, TreeNode<T> left, TreeNode<T>
! ! ! !right){!
! !item = newItem;!
! !leftChild = left;!
! !rightChild = right;!
!}!

}!
!

1: Binary Tree Node

CS200 - Trees

Tree

19

!
!
!
!

2: Binary Tree
!
// A Binary Tree!
public class BinaryTree<T> {!
 private TreeNode root;!
 // empty tree!
!public BinaryTree(){!

 this.root = null;!
 }!
 // rootItem!
!public BinaryTree(treeNode node){!
! this.root = node;!
!}!

 !
 // methods that manipulate the whole binary tree!
}

CS200 - Trees

Building a tree bottom up
n  Using a TreeNode constructor:
 public TreeNode(T item, TreeNode left, TreeNode right){

 this.item = item;
 this.left = left;
 this.right = right;

 }
 TreeNode tn1 = new TreeNode("abc");
 TreeNode tn2 = new TreeNode("stu");
 TreeNode root = new TreeNode("pqr",tn1,tn2);

Let’s go check out some more code:
 parsing infix expressions and building their expression trees.

CS200 - Trees 20

Traversal Algorithms

n  The traversal of a tree is the process of “visiting”
every node of the tree
q  Display a portion of the data in the node.
q  Process the data in the node

n  Because a tree is not linear, there are many
ways that this can be done.

21 CS200 - Trees

Breadth-first traversal (BFS)

n  Breadth-first processes the tree level by
level starting at the root and handling all the
nodes at a particular level from left to right.

22 CS200 - Trees

Breadth-first traversal

23

60

20 70

10 40

30 50

60 – 20 – 70 – 10 – 40 – 30 – 50
CS200 - Trees

Depth-first traversals (DFS)

n  DFS recursively follows the parent-child links
n  Three choices of when to visit the root r.

1.  Before it traverses both of r’s subtrees
2.  After it has traversed r’s left subtree (before it

traverses r’s right subtree)
3.  After it has traversed both of r’s subtrees

n  visiting = displaying information (e.g. the item)

n  Preorder, inorder, and postorder

24 CS200 - Trees

Depth First: Preorder traversal

n  Preorder traversal processes the
information at the root, followed by the entire
left subtree and concluding with the entire
right subtree.

25 CS200 - Trees

R L
R

L

Right
subtree

Left subtree

Depth First: Preorder traversal

26

60

20 70

10 40

30 50

60 – 20 – 10 – 40 – 30 – 50 – 70
CS200 - Trees

Depth First: Inorder traversal

n  Inorder traversal processes all the
information in the left subtree before
processing the root.

n  It finishes by processing all the information in
the right subtree.

27 CS200 - Trees

Depth First: Inorder traversal

28

60

20 70

10 40

30 50

Left subtree

Right
subtree

L

R L R

10 – 20 – 30 – 40 – 50 – 60 – 70
CS200 - Trees

Depth First: Postorder traversal

n  Postorder traversal processes the left
subtree, then the right subtree and finishes
by processing the root.

29 CS200 - Trees

Depth First: Postorder traversal

30

60

20 70

10 40

30 50
Left subtree

Right
subtree

L

R
L R

10 – 30 – 50 – 40 – 20 – 70 – 60
CS200 - Trees

Question

31

60

20 70

10 40

30 50

What is the preorder traversal of this tree?
A.  60-20-10-70-40-30-50
B.  10-20-60-70-30-40-50
C.  10-20-30-50-40-70-60

CS200 - Trees

Question

32

60

20 70

10 40

30 50

What is the postorder traversal of this tree?
A.  60-20-10-70-40-30-50
B.  10-20-60-70-30-40-50
C.  10-20-30-50-40-70-60

CS200 - Trees

Question

33

60

20 70

10 40

30 50

What is the inorder traversal of this tree?
A.  60-20-10-70-40-30-50
B.  10-20-60-70-30-40-50
C.  10-20-30-50-40-70-60

CS200 - Trees

Preorder algorithm

34 CS200 - Trees

 public void preorderTraverse(){
 if(debug)
 System.out.println("Pre Order Traversal");
 if (!isEmpty())
 preorderTraverse(root,"");
 else
 System.out.println("root is null");
 }

 public void preorderTraverse(TreeNode node, String indent){

 System.out.println(indent+node.getItem());
 if(node.getLeft()!=null) preorderTraverse(node.getLeft(),indent+" ");
 if(node.getRight()!=null) preorderTraverse(node.getRight(),indent+" ");

 }

Question

n  What does the inorder algorithm look like?
A.  Put “display” at beginning
B.  Put “display” in middle
C.  Put “display” at end

CS200 - Trees 35

Implementing Traversal with
Iterators

n  Use a queue to order the nodes according to
the type of traversal.

n  Initialize iterator by type (pre, post or in) and
enqueue all nodes in order necessary for
traversal

n  dequeue in next operation

36 CS200 - Trees

Using TreeIterator for Preorder

37

60

20 70

10 40

30 50

60 20 70 10 40 30 50

Front End

CS200 - Trees

Using TreeIterator for Inorder

38

60

20 70

10 40

30 50

10 20 70 30 40 50 60

Front End

CS200 - Trees

Using TreeIterator for Postorder

39

60

20 70

10 40

30 50

10 30 60 50 40 20 70

Front End

CS200 - Trees

BFS: Level Order Algorithm

n  Use a queue to track unvisited nodes

n  For each node that is dequeued,
q  enqueue each of its children
q  until queue empty

40 CS200 - Trees

LevelOrder

A

B

D

G

C

E

H

F

I

Queue Output
Init [A] -

Step 1 [B,C] A

Step 2 [C,D] A B

Step 3 [D,E,F] A B C

Step 4 [E,F,G,H] A B C D

Step 5 [F,G,H] A B C D E

Step 6 [G,H,I] A B C D E F

Step 7 [H,I] A B C D E F G

Step 8 [I] A B C D E F G H

Step 9 [] A B C D E F G H I

41 CS200 - Trees

Categories of Data Structures

n  Position-oriented data structures:
 access is by position/index (get(i))
n  Value-oriented structures:
 access is by value (get(Value))

n  Whether a data structure is index or value
oriented depends often on the way they are
used.

n  Examples?

42 CS200 - Trees

Binary Search Trees (BST)

n  A binary tree (BST) T is a binary search tree if for every
node n in T:
q  n’s value is greater than all values in its left subtree TL
q  n’s value is less than all values in its right subtree TR

q  TR and TL are binary search trees

n  The Items in BST Nodes must be Comparable!

43 CS200 - Trees

Which are BST?

44

8

4 9

3 5

6

5

5

6 7

Tree A

Tree B

Tree C

CS200 - Trees

BST

n  Organization
q  the sequence of adding and

removing influences the
shape of the tree

n  Search / Retrieval
q  Using inorder traversal
 WHY inorder?
 on the search key

1, 2, 3 ,4 ,5

1

2

3

4

5

1

2

4

5 3

2, 1, 4, 5, 3

45 CS200 - Trees

BST Methods

insert(in newIterm:TreeItemType)

q  inserts newItem into a BST whose items have distinct search

keys that differ from newItem’s
delete(in searchKey: KeyType) throws TreeException

q  Deletes the item whose search key equals searchKey. If none
exists, the operation fails.

retrieve(in searchKey:KeyType):TreeItemType
q  Returns the item whose search key equals searchKey. Returns

null if not found.

In P4 we build a symbol table: a search tree of BST nodes.

46 CS200 - Trees

BST - Search

compare value with node
q  null: not found
q  == : found
q  < : search in the left sub-tree
q  > : search in the right sub-tree

5

2

1

7

4 6 9

3

Locate 4 in the BST !

47 CS200 - Trees

Insert: question

Where will “8” be added?
5

2

1

7

4 6 9

3

48 CS200 - Trees

Where the search would have
looked for it:

Left child of 9

BST – Insert 6

12

3

1

19

5 16 22

4

Add 6

6

49 CS200 - Trees

BST – Insert

n  Always add as a leaf – in the position where
the search method would look for it

n  Find leaf location
q  < root : add to the left sub-tree
q  > root : add to the right sub-tree

n  Special Cases:
q  already there
q  empty tree

12

3

1

19

5 16 22

4 6

50 CS200 - Trees

Inserting an item
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)

// Inserts newItem into the binary search tree of which

//treeNode is the root

Let parentNode be the parent of the empty subtree at which
search terminates when it seeks newItem’s search key

if (search terminated at parentNode’s left subtree) {

set leftChild of parentNode to reference newItem

}

else {

set rightChild of parentNode to reference newItem

}

51 CS200 - Trees

Inserting an item
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)

// Inserts newItem into the binary search tree of which

// treeNode is the root

if (treeNode is null) {

create new node with newItem as data

return new node }

else if (newItem.getKey() < treeNode.getItem().getKey()) {

treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))

 return treeNode}

else {

treeNode.setRight(insertItem(treeNode.getRight(),newItem))

return treeNode }

Let’s go check out some code

52 CS200 - Trees

BST – Insert

12

19 3

1

treenode�

if (newItem.getKey() < treeNode.getItem().getKey()) {

treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))

newItem.getKey() : 6�

53 CS200 - Trees

BST – Insert

treenode�

else {

 treeNode.setRight(insertItem(treeNode.getRight(),newItem))

newItem.getKey() : 6�
12

19 3

1

54 CS200 - Trees

BST – Insert

6

treenode�

if (treeNode is null) {

create new node with newItem as data

return new node

new node�

newItem.getKey() <- 6�
12

19 3

1

55 CS200 - Trees

BST – Insert

6

treenode�

treeNode.setRight(insertItem(treeNode.getRight(),newItem))

return treeNode

12

19 3

1

56 CS200 - Trees

Delete: Cases to Consider

n  Delete something that is not there
q  Throw exception

n  Delete a leaf
q  Easy, just set link from parent to null

n  Delete a node with one child
n  Delete a node with two children

57 CS200 - Trees

Delete
Case 1: one child

5

8

6

8

6

Child becomes root

delete(5)

58 CS200 - Trees

Delete
Case 2: two children

5

2

1

8

4 6 9

7

delete(5) Which are valid
 replacement nodes?

59 CS200 - Trees

4 and 6, WHY?

max of left, min of right

what would be a good one here?

6, WHY?

Digression: inorder traversal
of BST
n  In order:

q  go left
q  visit the node
q  go right

n  The keys of an inorder traversal of a BST
are in sorted order!

60 CS200 - Trees

Delete
Case 2: two children

5

2

1

8

4 6 9

Replace root with its leftmost right descendant and replace that
node with its right child, if necessary (an easy delete case).
That node is the inorder successor of the root

7

6

2

1

8

4 7 9

delete(5)

61 CS200 - Trees

Delete Case 2: two children

5

2

1

8

4 6 9

Replace root with its leftmost right descendant and replace that
node with its right child, if necessary (an easy delete case).
That node is the inorder successor of the root.

Can that node have two children? A left child?

7

6

2

1

8

4 7 9

delete(5)

62 CS200 - Trees

Delete
Case 2: two children
1.  Find the inorder successor of N’s search

key.
q  The node whose search key comes immediately

after N’s search key
q  The inorder successor is in the leftmost node in

N’s right subtree.

2.  Copy the item of the inorder successor, M, to
the deleting node N.

3.  Remove the node M from the tree.

63 CS200 - Trees

Delete Pseudo Code I

deleteItem(in rootNode:TreeNode, in searchKey:KeyType): TreeNode

if (rootNode is null){ throw TreeException}

else if (searchKey equals key in rootNode item) {
//found it

newRoot = deleteNode(rootNode)

return newRoot }

else if (searchKey < key in rootNode item) {
//search left

newLeft = deleteItem(rootNode.getLeft(), searchKey)

rootNode.setLeft(newLeft)

return rootNode }

else {
// search right

newRight = deleteItem(rootNode.getRight(), searchKey)

rootNode.setRight(newRight)

return rootNode }

64 CS200 - Trees

 remove it

repair links to
child nodes

Delete Pseudo Code II
deleteNode(in treeNode:TreeNode):TreeNode

// deletes the item in the node referenced by treeNode

// returns root of resulting subtree

if (treeNode is leaf) { return null }

else if (treeNode has only 1 child c) {

if (c is left child) { return treeNode.getLeft() }

else { return treeNode.getRight() }

 }

else { // find and delete leftmost child on right

 treeNode.setItem(findLeftMostItem(treeNode.getRight()))
 treeNode.setRight(deleteLeftMostNode(treeNode.getRight()));
 return treeNode;

}

65 CS200 - Trees

Case 1: replace root w/child

Case 2: replace rootItem w/leftmost childItem
on right; delete leftMost child on right

Why two methods (not one)?

Delete Pseudo Code III

deleteLeftMostNode(in treeNode:TreeNode):TreeNode

// Deletes the node that is the leftmost descendant of the tree rooted at treeNode

// Returns subtree of deleted node

if (treeNode.getLeft() is null) // found the node to delete

{ return treeNode.getRight() }

else { // still replacing left nodes

treeNode.setLeft(deleteLeftMostNode(treeNode.getLeft())

return treeNode

}

66 CS200 - Trees

Complexity of BST Operations

Average Worst

search

insert

delete

O(n)

O(n)

O(n)

O(log n)

O(log n)

O(log n)

When does worst in BST happen?

67 CS200 - Trees

Trees - more definitions
n  m-ary tree

q  Every internal vertex has no more than m children.
q  Our main focus will be binary trees

n  Full m-ary tree
q  all interior nodes have m children

n  Perfect m-ary tree
q  Full m-ary tree where all leaves are at the same level

n  Perfect binary tree

q  number of leaf nodes: 2h - 1
q  total number of nodes: 2h – 1

68 CS200 - Trees

More definitions
n  Complete binary tree of height h

q  zero or more rightmost leaves not
present at level h

n  A binary tree T of height h is
complete if
q  All nodes at level h – 1 and above

have two children each, and
q  When a node at level h has children,

all nodes to its left at the same level
have two children each, and

q  When a node at level h has one child,
it is a left child

q  So the leaves at level h go from left to
right

69 CS200 - Trees

More definitions

n  balanced tree
q  Height of any node’s right subtree differs from left

subtree by 0 or 1

n  A complete tree is balanced

70 CS200 - Trees

Full? Complete? Balanced?

71

A

B
C D

E

CS200 - Trees

Question

72

A

B C D

E

CS200 - Trees

Full trees are:
A.  {}
B.  {A}
C.  {A,B}
D.  {A,B,C}
E.  None of the above

Question

73

A

B C D

E

CS200 - Trees

Complete trees are:
A.  {}
B.  {A}
C.  {A,B}
D.  {A,B,C}
E.  None of the above

Question

74

A

B C D

E

CS200 - Trees

Balanced trees are:
A.  {}
B.  {A}
C.  {A,B}
D.  {A,B,C}
E.  None of the above

Complete Binary Tree

75

Level-by-level numbering of a complete binary tree

1:Jane

2:Bob 3:Tom

4:Alan 5:Ellen 6:Nancy

What is the parent
 child index relationship?.

CS200 - Trees

left child i: at 2*i.

right child i: at 2*i+1.

lparent i: at i/2.

What is the maximum number of nodes in
a complete binary tree with Prichard
height h?

Question

76

1:Jane

2:Bob 3:Tom

4:Alan 5:Ellen 6:Nancy

CS200 - Trees

CS200 - Trees

Properties of Trees (Rosen)

1.  A tree has a unique path between any two of its vertices.

2.  A tree with n vertices has n-1 edges.

3.  A full binary tree with n internal nodes n+1 leaves.

77

Question : What is the maximum
number of nodes at level m (root at
level 1) in a binary tree?
A.  2m

B.  2m-1

C.  2m+1

Question

78

Jane

Bob Tom

Alan Ellen Nancy

CS200 - Trees

n  Uses the binary search tree ADT to sort an array of
records according to search-key

n  Efficiency
q  Average case: O(n * log n)
q  Worst case: O(n2)

79 CS200 - Trees

Sorting with a Tree

Example of Binary sorting

80

60

20 70

10 40

30 50

60 20 10 40 70 50 30

10 20 30 40 50 60 70

Create Tree

Inorder traverse Tree

CS200 - Trees

n-ary General tree

n  Tree with nodes that have no more than n
children.

n  How can we implement it?

81 CS200 - Trees

n = 3

82

A

B D

E G F H I

C

A
. .

A
. . .

Case 1: using 2 references

Case 2: using 3 references

CS200 - Trees

Case 1: Using 2 references

83

A

B C D

AE F G

H I

CS200 - Trees

We can represent
any n-ary tree this
way.

Case 2: Using 3 references

84

A

I H

G E F

D B C

CS200 - Trees

more direct, used in
search trees, and
parse trees

