
 CS200: Trees 

Rosen Ch. 11.1 & 11.3 
Prichard Ch. 11 
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Trees 
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A 

B C D 

Tree grows top to bottom! 

A node has only one  
parent!  
Except the root: zero 
           parents 

E F 



subtree 

Tree Terminology 

Node 

Edge 

parent 

root 

leaf 

interior node 

path 

Degree:  
   node: # children 
   tree: max node degree 

Depth/Level: 
  root: 1 
  child: level  
           parent + 1 
 
Height: max level 

child 

The parent child relationship is generalized to the 
relationship of ancestor and descendant All defs are in Prichard 
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Applications – File System  
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Applications - Parse Trees 
Used in compilers to check syntax 

assignment 
statement 

identifier = expression ; 

x 
+ expression expression 

y 

identifier number 

1 
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Applications – Expression Tree 
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Predictively parsing expressions  
  expr = expr “+” term  |  term 
  term = term “*” factor | factor 
  factor = number | “(“ expr “)”  
 
For each non-terminal (expr, term, factor) create a 
method recognizing that non-terminal. 
That method implements the alternatives on the 
RHS of its production.  

When encountering a terminal token, check whether  it 
is on input, and read passed it (“consume it”).  
When encountering a non-terminal, call its method.  
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What’s the problem? 



Predictively parsing expressions  

  expr = expr “+” term  |  term 
  term = term “*” factor | factor 
  factor = number | “(“ expr “)”  
For each non-terminal (expr, term, factor) create a method recognizing 
that non-terminal. That method implements the alternatives on the 
RHS of its production. When encountering a terminal token, check 
whether  it is on input, and read passed it. When encountering a non-
terminal, call its method.  
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What’s the solution? 

The grammar is left recursive: expr will call expr will call  
expr  etc. without ever reading any tokens   



Alternative, iterative grammar for expressions 

  expr = term ( “+” term )* 
  term = factor ( “*” factor )* 
  factor = number | “(“ expr “)”  
 
  ( … )* is implemented with a while loop 
 
  Let’s go check out some code:  
             Parsing infix  expressions 
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Binary Trees 
n  A binary tree is a set T of nodes such that either 

q  T is empty, or  
q  T is partitioned into three disjoint subsets: 

n  A single node r, the root 
n  Two binary trees, the left and right subtrees of r 

right subtree 

root 

left subtree 
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Tree Terminology 

n  Level/depth of a node n in a tree T 
q  If n is the root of T, it is at level 1 
q  If n is not the root of T, its level is 1 greater 

than the level of its parent 

n  Height: max level 
 

Starting at level 1 and counting nodes for path 
length is the Prichard style (Rosen starts at 0) 
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Height of a Binary Tree 

n  If T is empty, its height is 0. 

n  If T is a non empty binary tree,  
      height(T) = 1 + max{height(TL), height(TR)}	



12 

root 

TL TR 

Height of TL 

Height of TR 
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Binary trees with same nodes  
but different heights 

13 
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A 
B 

D E 

F 

G

A 

C 

B 

D 

E 

F 

G

A 
B C 

D E F G 

Tree A 

Tree B 

Tree D 
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Operations of the Binary Tree 

n  Create Tree consisting of a Leaf Node 

n  Create Tree with one or two existing subtrees  
 
n  Add and remove node and subtrees 
n  Retrieve or set the data in the root  

n  Determine whether the tree is empty 

14 CS200 - Trees 



Possible operations 
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Root!
Left subtree!
Right subtree 

createBinaryTree()!
makeEmpty()!
isEmpty()!
getRootItem()!
setRootItem()!
attachLeft()!
attachRight()!
attachLeftSubtree()!
attachRightSubtree()!
detachLeftSubtree()!
detachRightSubtree()!
getLeftSubtree()!
getRightSubtree()!
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Example 
// Draw these trees!
!
tree1.setRootItem(“F”)!
tree1.attachLeft(“G”)!

tree2.setRootItem(“D”)!
tree2.attachLeftSubtree(tree1)!

tree3.setRootItem(“B”)!
tree3.attachLeftSubtree(tree2)!
tree3.attachRight(“E”)!

tree4.setRootItem(“C”)!

binTree.createBinaryTree(“A”, tree3, tree4)!
!
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TreeNode 

leftChild rightChild 

item 

root 

leftChild rightChild 

item 

leftChild rightChild 

item 

A reference-based representation 
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Tree 
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Tree Node 
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public TreeNode<T> {!
!T item;!
!TreeNode<T> leftChild;!
!TreeNode<T> rightChild;!

!
!public TreeNode(T newItem){!
!  item = newItem;!

     leftChild = null;!
     rightChild = null;!

!}!
!

!public TreeNode(T newItem, TreeNode<T> left, TreeNode<T> 
! ! ! !right){!
! !item = newItem;!
! !leftChild = left;!
! !rightChild = right;!
!}!

}!
!

1: Binary Tree Node 
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Tree 

19 

!
!
!
!

2: Binary Tree 
!
// A Binary Tree!
public class BinaryTree<T> {!
  private TreeNode root;!
  // empty tree!
!public BinaryTree(){!

     this.root = null;!
  }!
  // rootItem!
!public BinaryTree(treeNode node){!
!  this.root = node;!
!}!

  . . . .!
  // methods that manipulate the whole binary tree!
} 
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Building a tree bottom up 
n  Using a TreeNode constructor: 
    public TreeNode(T item, TreeNode left, TreeNode right){ 

 this.item = item; 
 this.left = left; 
 this.right = right; 

    }              
                      TreeNode tn1 = new TreeNode("abc"); 
                      TreeNode tn2 = new TreeNode("stu"); 
                      TreeNode root = new TreeNode("pqr",tn1,tn2); 
 
Let’s go check out some more code: 
      parsing infix expressions and building their expression trees. 
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Traversal Algorithms 

n  The traversal of a tree is the process of “visiting” 
every node of the tree 
q  Display a portion of the data in the node. 
q  Process the data in the node 

n  Because a tree is not linear, there are many 
ways that this can be done. 
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Breadth-first traversal (BFS)  

n  Breadth-first processes the tree level by 
level starting at the root and handling all the 
nodes at a particular level from left to right. 
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Breadth-first traversal 

23 

60 

20 70 

10 40 

30 50 

60 – 20 – 70 – 10 – 40 – 30 – 50  
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Depth-first traversals (DFS) 

n  DFS recursively follows the parent-child links 
n  Three choices of when to visit the root r.  

1.  Before it traverses both of r’s subtrees 
2.  After it has traversed r’s left subtree (before it 

traverses r’s right subtree) 
3.  After it has traversed both of r’s subtrees 

n  visiting = displaying information (e.g. the item) 

n  Preorder, inorder, and postorder 
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Depth First: Preorder traversal 

n  Preorder traversal processes the 
information at the root, followed by the entire 
left subtree and concluding with the entire 
right subtree. 
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R L 
R 

L 

Right 
subtree 

Left subtree 

Depth First: Preorder traversal 
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60 

20 70 

10 40 

30 50 

60 – 20 – 10 – 40 – 30 – 50 – 70  
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Depth First: Inorder traversal 

n  Inorder traversal processes all the 
information in the left subtree before 
processing the root.  

n  It finishes by processing all the information in 
the right subtree. 
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Depth First: Inorder traversal 

28 

60 

20 70 

10 40 

30 50 

Left subtree 

Right 
subtree 

L 

R L R 

10 – 20 – 30 – 40 – 50 – 60 – 70  
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Depth First: Postorder traversal 

n  Postorder traversal processes the left 
subtree, then the right subtree and finishes 
by processing the root. 
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Depth First: Postorder traversal 

30 

60 

20 70 

10 40 

30 50 
Left subtree 

Right 
subtree 

L 

R 
L R 

10 – 30 – 50 – 40 – 20 – 70 – 60  
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Question 

31 

60 

20 70 

10 40 

30 50 

What is the preorder traversal of this tree? 
A.  60-20-10-70-40-30-50 
B.  10-20-60-70-30-40-50 
C.  10-20-30-50-40-70-60 

CS200 - Trees 



Question 
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60 

20 70 

10 40 

30 50 

What is the postorder traversal of this tree? 
A.  60-20-10-70-40-30-50 
B.  10-20-60-70-30-40-50 
C.  10-20-30-50-40-70-60 
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Question 
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60 

20 70 

10 40 

30 50 

What is the inorder traversal of this tree? 
A.  60-20-10-70-40-30-50 
B.  10-20-60-70-30-40-50 
C.  10-20-30-50-40-70-60 
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Preorder algorithm 
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 public void preorderTraverse(){ 
     if(debug) 
      System.out.println("Pre Order Traversal"); 
     if (!isEmpty()) 
      preorderTraverse(root,""); 
     else 
      System.out.println("root is null"); 
   } 
     
  public void preorderTraverse(TreeNode node, String indent){ 

 System.out.println(indent+node.getItem()); 
 if(node.getLeft()!=null) preorderTraverse(node.getLeft(),indent+" "); 
 if(node.getRight()!=null) preorderTraverse(node.getRight(),indent+" "); 

  } 



Question 

n  What does the inorder algorithm look like? 
A.  Put “display” at beginning  
B.  Put “display” in middle 
C.  Put “display” at end 
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Implementing Traversal with  
Iterators 

n  Use a queue to order the nodes according to 
the type of traversal. 

n  Initialize iterator by type (pre, post or in) and 
enqueue all nodes in order necessary for 
traversal 

n  dequeue in next operation 
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Using TreeIterator for Preorder 

37 

60 

20 70 

10 40 

30 50 

60 20 70 10 40 30 50 

Front End 
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Using TreeIterator for Inorder 
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60 

20 70 

10 40 

30 50 

10 20 70 30 40 50 60 

Front End 
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Using TreeIterator for Postorder 
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60 

20 70 

10 40 

30 50 

10 30 60 50 40 20 70 

Front End 
 

CS200 - Trees 



BFS:  Level Order Algorithm 

n  Use a queue to track unvisited nodes 

n  For each node that is dequeued, 
q  enqueue each of its children 
q  until queue empty 
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LevelOrder 

A 

B 

D 

G 

C 

E 

H 

F 

I 

Queue Output 
Init [A]  - 

Step 1 [B,C]  A 

Step 2 [C,D]  A B 

Step 3 [D,E,F]  A B C 

Step 4 [E,F,G,H]  A B C D 

Step 5 [F,G,H]  A B C D E 

Step 6 [G,H,I]  A B C D E F 

Step 7 [H,I]  A B C D E F G 

Step 8 [I]  A B C D E F G H 

Step 9 [ ]  A B C D E F G H I 
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Categories of Data Structures 

n  Position-oriented data structures:   
       access is by position/index  (get(i)) 
n  Value-oriented structures:  
       access is by value (get(Value)) 

n  Whether a data structure is index or value 
oriented depends often on the way they are 
used. 

n  Examples? 
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Binary Search Trees (BST) 

n  A binary tree (BST) T is a binary search tree if for every 
node n in T: 
q  n’s value is greater than all values in its left subtree TL 
q  n’s value is less than all values in its right subtree TR 

q  TR and TL are binary search trees 

n  The Items in BST Nodes must be Comparable! 
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Which are BST? 
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8 

4 9 

3 5 

6 

5 

5 

6 7 

Tree A 

Tree B 

Tree C 
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BST 

n  Organization 
q  the sequence of adding and 

removing influences the 
shape of the tree 

n  Search / Retrieval 
q  Using inorder traversal 
       WHY inorder? 
     on the search key 

1, 2, 3 ,4 ,5 

1 

2 

3 

4 

5 

1 

2 

4 

5 3 

2, 1, 4, 5, 3 

45 CS200 - Trees 



BST Methods 

insert(in newIterm:TreeItemType)

q  inserts newItem into a BST whose items have distinct search 

keys that differ from newItem’s 
delete(in searchKey: KeyType) throws TreeException


q  Deletes the item whose search key equals searchKey. If none 
exists, the operation fails. 

retrieve(in searchKey:KeyType):TreeItemType 
q  Returns the item whose search key equals searchKey. Returns 

null if not found. 

 
In P4 we build a symbol table: a search tree of BST nodes.  
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BST - Search 

compare value with node 
q  null: not found 
q  == : found 
q  <   : search in the left sub-tree 
q  >   : search in the right sub-tree 

5 

2 

1 

7 

4 6 9 

3 

Locate 4 in the BST ! 
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Insert: question 

Where will “8” be added? 
5 

2 

1 

7 

4 6 9 

3 
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Where the search would have 
looked for it: 

Left child of 9 



BST – Insert 6 

12 

3 

1 

19 

5 16 22 

4 

Add 6  

6 

49 CS200 - Trees 



BST – Insert 

n  Always add as a leaf – in the position where 
the search method would look for it 

n  Find leaf location 
q  <  root : add to the left sub-tree 
q  >  root : add to the right sub-tree 

n  Special Cases: 
q  already there 
q  empty tree   

12 

3 

1 

19 

5 16 22 

4 6 
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Inserting an item 
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)


// Inserts newItem into the binary search tree of which 


//treeNode is the root



Let parentNode be the parent of the empty subtree at which 
search terminates when it seeks newItem’s search key



if (search terminated at parentNode’s left subtree) {


 
set leftChild of parentNode to reference newItem


}


else {


 
set rightChild of parentNode to reference newItem


}
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Inserting an item 
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)



// Inserts newItem into the binary search tree of which 


// treeNode is the root


if (treeNode is null) {


 
create new node with newItem as data


 
return new node }


else if (newItem.getKey() < treeNode.getItem().getKey()) {


 
treeNode.setLeft(insertItem(treeNode.getLeft(), newItem)) 


            return treeNode}


else { 


 
treeNode.setRight(insertItem(treeNode.getRight(),newItem))


 
return treeNode }




Let’s go check out some code
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BST – Insert 

12 

19 3 

1 

treenode�

if (newItem.getKey() < treeNode.getItem().getKey()) {


 
treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))


newItem.getKey() : 6�
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BST – Insert 

treenode�

else { 

          treeNode.setRight(insertItem(treeNode.getRight(),newItem))


newItem.getKey() : 6�
12 

19 3 

1 
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BST – Insert 

6 

treenode�

if (treeNode is null) {


create new node with newItem as data


return new node


new node�

newItem.getKey() <- 6�
12 

19 3 

1 

55 CS200 - Trees 



BST – Insert 

6 

treenode�

treeNode.setRight(insertItem(treeNode.getRight(),newItem))

return treeNode


12 

19 3 

1 
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Delete: Cases to Consider 

n  Delete something that is not there 
q  Throw exception 

n  Delete a leaf 
q  Easy, just set link from parent to null 

n  Delete a node with one child 
n  Delete a node with two children 
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Delete  
Case 1: one child 

5 

8 

6 

8 

6 

Child becomes root 

delete(5) 
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Delete 
Case 2: two children 

5 

2 

1 

8 

4 6 9 

7 

delete(5) Which are valid  
     replacement nodes? 
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4 and 6, WHY? 

max of left, min of right 

what would be a good  one here? 

6, WHY? 



Digression:  inorder traversal 
of BST 
n  In order: 

q  go left 
q  visit the node 
q  go right 

n  The keys of an inorder traversal of a BST 
are in sorted order! 
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Delete 
Case 2: two children 

5 

2 

1 

8 

4 6 9 

Replace root with its leftmost right descendant and replace that 
node with its right child, if necessary (an easy delete case). 
That node is the inorder successor of the root 

7 

6 

2 

1 

8 

4 7 9 

delete(5) 
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Delete   Case 2: two children 

5 

2 

1 

8 

4 6 9 

Replace root with its leftmost right descendant and replace that 
node with its right child, if necessary (an easy delete case). 
That node is the inorder successor of the root. 
 
Can that node have two children?  A left child? 
 

7 

6 

2 

1 

8 

4 7 9 

delete(5) 
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Delete 
Case 2: two children 
1.  Find the inorder successor of N’s search 

key. 
q  The node whose search key comes immediately 

after N’s search key 
q  The inorder successor is in the leftmost node in 

N’s right subtree. 

2.  Copy the item of the inorder successor, M, to 
the deleting node N. 

3.  Remove the node M from the tree. 
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Delete Pseudo Code I 

deleteItem(in rootNode:TreeNode, in searchKey:KeyType): TreeNode


if (rootNode is null){ throw TreeException}


else if (searchKey equals key in rootNode item) { 
//found it


 
newRoot = deleteNode(rootNode) 



 
return newRoot }


else if (searchKey < key in rootNode item) { 
//search left


 
newLeft = deleteItem(rootNode.getLeft(), searchKey)


 
rootNode.setLeft(newLeft)


 
return rootNode }


else { 
// search right


 
newRight = deleteItem(rootNode.getRight(), searchKey)


 
rootNode.setRight(newRight)


 
return rootNode }
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 remove it 

repair links to 
child nodes 



Delete Pseudo Code II 
deleteNode(in treeNode:TreeNode):TreeNode



// deletes the item in the node referenced by treeNode


// returns root of resulting subtree 



if (treeNode is leaf) { return null }


else if (treeNode has only 1 child c) {


 
if (c is left child) { return treeNode.getLeft() }


 
else { return treeNode.getRight() }  


            }





else { // find and delete leftmost child on right

        treeNode.setItem(findLeftMostItem(treeNode.getRight())) 
        treeNode.setRight(deleteLeftMostNode(treeNode.getRight())); 
        return treeNode;



}
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Case 1: replace root w/child 

Case 2: replace rootItem w/leftmost childItem 
on right; delete leftMost child on right 

Why two methods (not one)? 



Delete Pseudo Code III 



deleteLeftMostNode(in treeNode:TreeNode):TreeNode



// Deletes the node that is the leftmost descendant of the tree rooted at treeNode


// Returns subtree of deleted node 


if (treeNode.getLeft() is null)    // found the node to delete


 
{ return treeNode.getRight() }


else { // still replacing left nodes


 
treeNode.setLeft(deleteLeftMostNode(treeNode.getLeft())


 
return treeNode


}
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Complexity of BST Operations 

Average Worst 

search 

insert 

delete 

O(n) 

O(n) 

O(n) 

O(log n) 

O(log n) 

O(log n) 

When does worst in BST happen? 
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Trees - more definitions 
n  m-ary tree  

q  Every internal vertex has no more than m children. 
q  Our main focus will be binary trees 

n  Full m-ary tree 
q  all interior nodes have m children 

n  Perfect m-ary tree 
q  Full m-ary tree where all leaves are at the same level 

  
n  Perfect binary tree 

q  number of leaf nodes:  2h - 1 
q  total number of nodes: 2h – 1 
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More definitions 
n  Complete binary tree of height h 

q  zero or more rightmost leaves not 
present at level h 

n  A binary tree T of height h is 
complete if 
q  All nodes at level h – 1 and above 

have two children each, and 
q  When a node at level h  has children, 

all nodes to its left at the same level 
have two children each, and 

q  When a node at level h has one child, 
it is a left child 

q  So the leaves at level h go from left to 
right 
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More definitions 

n  balanced tree  
q  Height of any node’s right subtree differs from left 

subtree by 0 or 1 

n  A complete tree is balanced 
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Full? Complete? Balanced?  

71 

A 

B 
C D 

E 
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Question 
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A 

B C D 

E 
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Full trees are: 
A.  {} 
B.  {A} 
C.  {A,B} 
D.  {A,B,C} 
E.  None of  the above 



Question 
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A 

B C D 

E 
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Complete trees are: 
A.  {} 
B.  {A} 
C.  {A,B} 
D.  {A,B,C} 
E.  None of  the above 



Question 
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A 

B C D 

E 
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Balanced trees are: 
A.  {} 
B.  {A} 
C.  {A,B} 
D.  {A,B,C} 
E.  None of  the above 



Complete Binary Tree 

75 

Level-by-level numbering of  a complete binary tree 

1:Jane 

2:Bob 3:Tom 

4:Alan 5:Ellen 6:Nancy 

What is the parent 
 child index relationship?. 
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left child i: at 2*i. 

right child i: at 2*i+1. 

lparent i: at i/2. 



What is the maximum number of nodes in 
a complete binary tree with Prichard 
height h? 

    

Question 
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1:Jane 

2:Bob 3:Tom 

4:Alan 5:Ellen 6:Nancy 
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Properties of Trees (Rosen) 

1.  A tree has a unique path between any two of its vertices. 

2.  A tree with n vertices has n-1 edges.  

3.  A full binary tree with n internal nodes n+1 leaves.  
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Question : What is the maximum 
number of nodes at level m (root at 
level 1) in a binary tree? 
A.  2m 

B.  2m-1 

C.  2m+1 

Question 
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Jane 

Bob Tom 

Alan Ellen Nancy 
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n  Uses the binary search tree ADT to sort an array of 
records according to search-key 

n  Efficiency 
q  Average case: O(n * log n) 
q  Worst case: O(n2) 
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Sorting with a Tree 



Example of Binary sorting 
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Create Tree  

Inorder traverse Tree 
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n-ary General tree  

n  Tree with nodes that have no more than n 
children. 

n  How can we implement it? 
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n = 3 

82 

A 

B D 

E G F H I 

C 

A 
. . 

A 
. . . 

Case 1: using 2 references 

Case 2: using 3 references 

CS200 - Trees 



Case 1: Using 2 references 
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A 

B C D 

AE F G 

H I 
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We can represent  
any n-ary tree this 
way. 



Case 2: Using 3 references 

84 

A 

I H 

G E F 

D B C 

CS200 - Trees 

more direct, used in 
search trees, and 
parse trees 


