
 CS200: Advanced OO in Java
interfaces, inheritance,

abstract classes, generics

Prichard Ch. 9

CS200 - Advanced OO 1

Basic Component: Class

A Class is a software bundle of related states
(properties, or variables) and behavior
(methods)

n  State is stored in instance variables
n  Method exposes behavior

2 CS200 - Advanced OO

Basic Components
n  Class: Blueprint from which objects are

created
q  Multiple Object Instances created from a class

n  Interface: A Contract between classes and
the outside world.
q  When a class implements an interface, it

promises to provide the behavior published by
that interface.

n  Package: a namespace (directory) for
organizing classes and interfaces

3 CS200 - Advanced OO

Data Encapsulation

n  An ability of an object to be a container (or
capsule) for related properties and methods.
q  Preventing unexpected change or reuse of the

content
n  Data hiding

q  Object can shield variables from external access.
n  Private variables
n  Public accessor and mutator methods, with potentially

limited capacities, e.g. only read access, or write only
valid data.

4 CS200 - Advanced OO

Data Encapsulation
public class Clock{

private long time, alarm_time;
private String serialNo;

public void setTime(long time){
 this.time = time;
}
public void setAlarmTime(long time){
 this.alarm_time = time;
}
public long getTime(){return time}
public long getAlarmTime(){return alarm_time}

 public void noticeAlarm(){ ring alarm }
protected void setSerialNo(String _serialNo){…}

}

5 CS200 - Advanced OO

Inheritance

n  The ability of a class to derive properties
from a previously defined class.

n  Relationship among classes.
n  Enables reuse of software components

q  e.g., java.lang.Object()
q  toString(), notifyAll(), equals(), etc.

6 CS200 - Advanced OO

Question

n  Which of the following methods is not defined
for java.lang.object?

A.  equals
B.  add
C.  toString

CS200 - Advanced OO 7

Example: Inheritance

clock

Sports
Watch

Radio
Clock

8 CS200 - Advanced OO

Example: Inheritance – cont.

9

Public class SportsWatch extends Clock
{
 private long start_time;
 private long end_time;

 public long getDuration()
 {
 return end_time - start_time;
 }

}

CS200 - Advanced OO

Overriding Methods

10

public class RadioClock
{
@override

 public void noticeAlarm(){
 ring alarm
 turn_on_the_Radio
 }
}

CS200 - Advanced OO

Java Access Modifiers

n  Keywords: public, private,and
protected

n  Control the visibility of the members of a class
q  Public members: used by anyone
q  Private members: used only by methods of the class
q  Protected members: used only by methods of the

class, methods of other classes in the same package,
and methods of the subclasses.

q  Members declared without an access modifier are
available to methods of the class and methods of
other classes in the same package.

11 CS200 - Advanced OO

Polymorphism

n  “Having multiple forms”
n  Ability to create a variable, or an object that

has more than one form.

12 CS200 - Advanced OO

 Polymorphic method
RadioClock myRadioClock = new RadioClock();
Clock myClock = myRadioClock;
myClock.noticeAlarm();

13

A: Clock
B: RadioClock

CS200 - Advanced OO

Question

n  Why would you redefine the following
methods for subclasses of Object?

A.  equals
B.  toString

CS200 - Advanced OO 14

Dynamic Binding

n  The version of a method “notifyAlarm()”
is decided at execution time, not at
compilation time.

n  WHY?

15 CS200 - Advanced OO

Abstract Class vs. Interface

n  Abstract class: a special kind of class that
cannot be instantiated, because it has some
unimplemented (abstract) methods in it.
q  It allows only other classes to inherit from it, and

make the derived class (more) concrete.
n  Interface: is NOT a class.

q  An Interface has NO implementation at all inside.
n  Definitions of public methods without body.

 16 CS200 - Advanced OO

Abstract classes
n  An abstract method has no body (i.e., no implementation).

n  Hence, an abstract class is incomplete and cannot be
instantiated, but can be used as a base class.
 abstract public class abstract-base-class-name {
 public abstract return-type method-name(params);

 }

 public class derived-class-name {

 public return-type method-name(params)
 { statements; }

 }

Some subclass is required to override the abstract
method and provide an implementation.

Abstract classes

n  When to use abstract classes

q  To represent entities that are insufficiently defined
q  Group together data/behavior that is useful for its

subclasses

Comparison-1

19

Feature Interface Abstract Class
Multiple inheritance A class may implement

several interfaces
Only one

Default
implementation

Cannot provide any
code

Can provide complete,
default code and/or
just the details that
have to be overridden.

Access Modifier Cannot have access
modifiers (everything
is assumed as public)

Can have it.

CS200 - Advanced OO

Comparison-2

20

Feature Interface Abstract Class

Adding functionality
(Versioning)

For a new method, we
have to track down
all the classes that
implement the
interface and define
implementations for
that method

For a new method, we
can provide default
implementation and
all the existing code
might work properly.

Instance variables
and Constants

No instance
variables in interfaces

Instance variables
and can be defined

CS200 - Advanced OO

Inheritance example

n  You have been tasked with writing a program
that handles pay for the employees of a non-
profit organization.

n  The organization has several types of
employees on staff:
q  Full-time employees
q  Hourly workers
q  Volunteers
q  Executives

Example

n  Paying an employee:
q  Full-time employees – have a monthly pay
q  Hourly workers – hourly wages + hours worked
q  Volunteers – no pay
q  Executives – receive bonuses

Design

n  Need class / classes that handle employee
pay (should also store employee info such as
name, phone #, address).

n  Possible choices:
q  A single Employee class that knows how to

handle different types of employees
q  A separate class for each type of employee.

n  What are the advantages/disadvantages of
each design?

Design
n  All types of staff members need to have some basic

functionality – capture that in a class called StaffMember
public class StaffMember {
 private String name;
 private String address;
 private String phone;

 public StaffMember (String name, String address,
 String phone) {

 this.name = name;
 this.address = address;
 this.phone = phone;
 }
 // … getters and setters …
}

Code re-use

n  We'd like to be able to do the following:

// A class to represent a paid employee.
public class Employee {
 <copy all the contents from StaffMember class.>

 private double payRate;
 public double pay() {
 return payRate;
 }

}

 without explicitly copying any code!

Inheritance
n  Creating a subclass, general syntax:

 public class <name> extends <superclass name> {
q  Example:
 public class Employee extends StaffMember {

 }

n  By extending StaffMember, each Employee object now:
q  has name, address, phone instance variables and
 get/setName(), get/setAddress(), get/setPhone() methods

automatically

q  can be treated as a StaffMember by any other code (seen later)

(e.g. an Employee could be stored in a variable of type StaffMember
or stored as an element of an array StaffMember[])

Inheritance

n  inheritance: A way to create new classes based on
existing classes, taking on their attributes/behavior.
q  a way to group related classes
q  a way to share code between classes

n  A class extends another by absorbing its state and
behavior.
q  super-class: The parent class that is being extended.
q  sub-class: The child class that extends the super-class and

inherits its behavior.
n  The subclass receives a copy of every field and method from its

super-class.
n  The subclass is a more specific type than its super-class (an is-a

relationship)

Single Inheritance in Java

n  Creating a subclass, general syntax:
q  public class <name> extends <superclass name>
q  Can only extend a single class in Java!

n  Extends creates an is-A relationship
q  class <name> is-A <superclass name>
q  This means that anywhere a <superclass variable> is

used, a <subclass variable> may be used.
q  Classes get all the instance variables/methods of their ancestors,

but cannot necessarily directly access them...

New access modifier - protected

n  public - can be seen/used by everyone

n  protected – can be seen/used within class
and any subclass.

n  private - can only be seen/used by code in

class (not in subclass!)

Extends/protected/super
public class Employee extends StaffMember {
 protected String socialSecurityNumber;
 protected double payRate;

 public Employee (String name, String address,
 String phone, String socSecNumber, double rate){
 super(name, address, phone);
 socialSecurityNumber = socSecNumber;
 payRate = rate;
 }
 public double pay(){

 return payRate;
 }
}

StaffMember needs to change a bit
public class StaffMember {
 protected String name;
 protected String address;
 protected String phone;

 public StaffMember (String name, String address, String
phone) {

 this.name = name;

 this.address = address;

 this.phone = phone;

 }

}

Overriding methods

n  override: To write a new version of a method in a
subclass that replaces the super-class's version.
q  There is no special syntax for overriding.

To override a super-class method, just write a new version of it in
the subclass. This will replace the inherited version.

q  Example:

 public class Hourly extends Employee {
 // overrides the pay method in Employee class
 public double pay () {

 double payment = payRate * hoursWorked;

 hoursWorked = 0;

 return payment;

 }

Calling overridden methods

n  The new method often relies on the
overridden one. A subclass can call an
overridden method with the super keyword.

n  Calling an overridden method, syntax:

 super.<method name> (<parameter(s)>)
q  public class Executive extends Employee {

 public double pay() {
 double payment = super.pay() + bonus;

 bonus = 0; // one time bonus

 return payment;
 }

Inheritance and
Polymorphism

Constructors

n  Constructors are not inherited.
q  Default constructor:
 public Employee(){

 super(); // calls StaffMember() constructor
}

q  Constructor needs to call super-class constructors explicitly:

 public Employee (String name, String address, String phone,
 String socSecNumber, double rate) {

 super (name, address, phone);

 socialSecurityNumber = socSecNumber;

 payRate = rate;

 }

The super call must be the first
statement in the constructor.

Everything is an Object

n  Every class in Java implicitly extends the Java
Object class.

n  Therefore every Java class inherits all the
methods of the class Object, such as
q  equals(Object other)
q  toString()

n  Often we want to override the standard
implementation

What is the difference between overloading and
overriding?

The equals method
n  You might think that the following is a valid implementation of the

equals method:
 public boolean equals(Object other) {
 if (name.equals(other.name)) {
 return true;
 } else {
 return false;
 }
 }

However, it does not compile.
StaffMember.java:36: cannot find symbol
symbol : variable name
location: class java.lang.Object

n  Why? Because an Object does not have a name
instance variable.

Type casting

n  The object that is passed to equals can be cast from
Object into your class's type.

q  Example:

 public boolean equals(Object o) {
 StaffMember other = (StaffMember) o;

 return name.equals(other.name);
 }

n  Type-casting with objects behaves differently than
casting primitive values.
q  We are really casting a reference of type Object into a

reference of type StaffMember.
q  We're promising the compiler that o refers to a StaffMember

object, and thus has an instance variable name.

instanceof

We can use a keyword operator instanceof to ask
whether a variable refers to an object of a given type.

q  The instanceof operator, general syntax:
 <variable> instanceof <type>

q  The above is a boolean expression that can be used as the test

in an if statement.

q  Examples:
 String s = "hello";
 StaffMember p = new StaffMember(…);
 if(s instanceof String) ...
 if(p instanceof String) ...

Our final version of equals

This version of the equals method allows us to correctly
compare StaffMember objects with any type of object:

// Returns whether o refers to a StaffMember
// object with the same name

public boolean equals(Object o) {
 if (o instanceof StaffMember) {
 StaffMember other = (StaffMember) o;
 return name.equals(other.name);
 } else {
 return false;
 }
}

even though we just checked
that o is a StaffMember, we
still have to cast it!

instanceof

n  In our payroll example, Employee extends StaffMember. Consider the
following snippet of code:

Employee employee = new Employee(…);

Boolean result = (employee instanceof StaffMember);

What will be the value of result?

a)  true

b)  false

Binding: which method is called?

n  Assume that the following four classes have been declared:

public class Foo {
 public void method1() {
 System.out.println("foo 1");
 }

 public void method2() {
 System.out.println("foo 2");
 }

 public String toString() {
 return "foo";
 }
}

public class Bar extends Foo {
 public void method2() {
 System.out.println("bar 2");
 }
}

Example
public class Baz extends Foo {
 public void method1() {
 System.out.println("baz 1");
 }

 public String toString() {
 return "baz";
 }
}

public class Mumble extends Baz {
 public void method2() {
 System.out.println("mumble 2");
 }
}

n  The output of the following client code?

Foo[] a = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < a.length; i++) {
 System.out.println(a[i]);
 a[i].method1();
 a[i].method2();
 System.out.println();
}

Describing inheritance and binding

n  UML diagram:
Subclasses point to their
super-class

n  List methods (inherited
methods in parenthesis)

n  Method called is the
nearest in the hierarchy
going up the tree
q  This is a dynamic (run time)

phenomenon called
dynamic binding

Example (solved)

Foo[] a = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < a.length; i++) {
 System.out.println(a[i]);
 a[i].method1();
 a[i].method2();
 System.out.println();
}

Output? baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1

mumble 2

foo
foo 1
foo 2

Polymorphism

n  It’s legal for a variable of a super-class to refer
to an object of one of its subclasses.
 Example:

 staffList = new StaffMember[6];
 staffList[0] = new Executive("Sam", "123 Main Line",

 "555-0469", "123-45-6789", 2423.07);

 staffList[1] = new Employee("Carla", "456 Off Line",
 "555-0101", "987-65-4321", 1246.15);

 staffList[2] = new Employee("Woody", "789 Off Rocker",
 "555-0000", "010-20-3040", 1169.23);

 ((Executive)staffList[0]).awardBonus (500.00);

Arrays of a super-class type can store any subtype as elements.

Conversion and casting

n  When a primitive type is used to store a value
of another type (e.g. an int in a double
variable) conversion takes place, i.e. the bit
representation changes from e.g., int to double.

n  When a subclass is stored in a superclass no
conversion occurs, as these are both
references!

Polymorphism defined

n  Polymorphism: the ability for the same code to
be used with several different types of objects
and behave differently depending on the actual
type of object used. Polymorphism is based on
dynamic binding.

n  Example:
 for (int count=0; count < staffList.length; count++)
{

 amount = staffList[count].pay(); // polymorphic

 }

Polymorphism and parameters

n  You can pass any subtype of a parameter's
type.

public class EmployeeMain {
 public static void main(String[] args) {
 Executive lisa = new Executive(…);
 Volunteer steve = new Volunteer(…);
 payEmployee(lisa);
 payEmployee(steve);
 }

 public static void payEmployee(StaffMember s) {
 System.out.println("salary = " + s.pay());
 }

}

Notes about polymorphism

n  The program doesn’t know which pay method
to call until it’s actually running. This has
many names: late binding, dynamic binding,
virtual binding, and dynamic dispatch.

n  You can only call methods known to the
super-class, unless you explicitly cast.

n  You cannot assign a super-class object to a
sub-class variable

n  WHY? Which is more specific (sub or super?)

Inheritance: FAQ
n  How can a subclass call a method or a constructor

defined in a super-class?
q  Use super() or super.method()
q  Can you call super.super.method()?
q  NO.

n  Does Java support multiple inheritance?
q  No. Use interfaces instead

n  What restrictions are placed on method overriding?
q  Same name, argument list, and return type. May not throw

exceptions that are not thrown by the overridden method, or limit
the access to the method

n  Does a class automatically call the constructors of its
super-class?
q  No. Need to call them explicitly

this and super in constructors

n  this(…) calls a constructor of the same
class.

n  super(…) calls a constructor of the super-
class.

n  Both need to be the first action in a
constructor.

Generics

n  Generics are used to build classes with a parameterized
(element) type, e.g.

 public class Thing<T>{
 private T data;
 public Thing(T input) {
 data = input;
 }
 }

n  We can now instantiate a particular Thing as follows:
 Thing<String> stringThing =
 new Thing<String>(“ a string “);

CS200 - Advanced OO 53

Element types in Container Classes

n  We have met generics in container classes such as
ArrayList and List. E.g., ArrayLists are defined as:

 Class ArrayList<E>
q  See java API

n  Generics use type specifiers to, well, specify the type of
the elements of the container, e.g., List<Integer>
contains Integer objects.

 List <Integer> integerList =
 new List<Integer>();

n  We can put an interface in the type specifier, e.g.,
 ArrayList<Comparable>

CS200 - Advanced OO 54

Extending the type specifier

n  Suppose we want to specify that objects of type Thing
are Comparable. They could be e.g. Strings or Integers.
We can express this as follows:

 public class Thing<T extends Comparable<T>>{
 …
 }

n  let’s check out some code …

 We will use generics in P4s BST and BSTNode classes

CS200 - Advanced OO 55

