
Graph Traversals

CS200 - Graphs 1

Tree traversal reminder

A

B

D

G

C

E

H

F

I

Pre order

A B D G H C E F I

In order

G D H B A E C F I

Post order

G H D B E I F C A

Level order

A B C D E F G H I

Connected Components

n  The connected component of a node s is the largest set of nodes
reachable from s. A generic algorithm for creating connected
component(s):

n  Upon termination, R is the connected component containing s.

q  Breadth First Search (BFS): explore in order of distance from s.
q  Depth First Search (DFS): explores edges from the most

recently discovered node; backtracks when reaching a dead-
end.

3

R = {s}
while
 add v to R

∃edge(u,v) : u∈ R∧v ∉ R

Graph Traversals – Depth First Search

n  Depth First Search starting at u

CS200 - Graphs 4

 DFS(u):
 mark u as visited and add u to R
 for each edge (u,v) :
 if v is not marked visited :
 DFS(v)

Depth First Search

A B C D

E F G H

I J K L

M N O P

CS200 - Graphs 5

Question

n  What determines the order in which DFS
visits nodes?

n  The order in which a node picks its outgoing
edges

CS200 - Graphs 6

Graph Traversal
Depth First Search (DFS)

dfs(in v:Vertex)!
!mark v as visited !
!for (each unvisited vertex u adjacent to v)!
! !dfs(u)

n  Need to track visited nodes
n  Order of visiting nodes is not completely specified

q  if nodes have priority, then the order may become deterministic
 for (each unvisited vertex u adjacent to v in priority order)

n  DFS applies to both directed and undirected graphs
n  Which graph implementation is suitable?

Depth first search algorithm

CS200 - Graphs 7

Iterative DFS: explicit Stack
dfs(in v:Vertex)

s – stack for keeping track of active vertices
s.push(v)
mark v as visited
while (!s.isEmpty()) {
 if (no unvisited vertices adjacent to the vertex on top of the stack) {
 s.pop() //backtrack
 else {
 select unvisited vertex u adjacent to vertex on top of the stack
 s.push(u)
 mark u as visited
 }
}

CS200 - Graphs 8

Breadth First Search (BFS)

n  Is like level order in
trees

n  Which is a BFS
traversal starting
from A?

A.  A, B, C, D, …
B.  A, B, F, E, …
C.  A, E, F, B, …
D.  A, B, E, F, …

CS200 - Graphs

A B C D

E F G H

I J K L

M N O P

9

5

4

0 1 2 3

Graph Traversal –
Breadth First Search (BFS)

A B C D

E F G H

I J K L

M N O P

Breadth First Search

CS200 - Graphs 10

BFS

n  Similar to level order tree traversal

n  DFS is a last visited first explored strategy
 (uses a stack)

n  BFS is a first visited first explored strategy
 (uses a queue)

CS200 - Graphs 11

BFS
bfs(in v:Vertex)!
!q – queue of nodes to be processed!
!q.enque(v)!
!mark v as visited!
!while(!q.isEmpty()) {!
! !w = q.dequeue()!
! !for (each unvisited vertex u adjacent to w) {!
! ! !mark u as visited!
! ! !q.enqueue(u)!
! !}!
!}!

CS200 - Graphs 12

Trace this example

5

4

0
1 2 3

A B C D

E F G H

I J K L

M N O P

bfs(in v:Vertex)!
!q – queue of nodes!
!q.enque(v)!
!mark v as visited!
!while(!q.isEmpty()) {!
! !w = q.dequeue()!
! !for (each unvisited vertex

! ! !u adjacent to w) {!
! ! !mark u as visited!
! ! !q.enqueue(u)!
! !}!

!}!

CS200 - Graphs 13

Graph Traversal

n  Properties of BFS and DFS:
q  Visit all vertices that are reachable from a given

vertex
q  Therefore DFS(v) and BFS(v) visit a connected

component

n  Computation time for DFS, BFS for a
connected graph: O(|V| + |E|)

 WHY?

CS200 - Graphs 14

Complexity BFS / DFS

n  Each node is marked at most once, and visited at most
once.

n  The adjacency list of each node is scanned only once.

n  Therefore time complexity for BFS and DFS is
 O(|V|+|E|) or O(n+m)

Reachability

n  Reachability
q  v is reachable from u

n  if there is a (directed) path from u to v

q  solved using BFS or DFS
n  Transitive Closure (G*)

q  G* has edge from u to v if v is reachable from u.

CS200 - Graphs 16

Trees as Graphs

n  Tree: an undirected connected graph that
has no cycles.

A B C D

E F G H

I J K L

M N O P

CS200 - Graphs 17

Rooted Trees

n  A rooted tree is a tree in which one vertex
has been designated as the root and every
edge is directed away from the root

CS200 - Graphs 18

Example: Build rooted trees.

A B C D

E F G H

I J K L

M N O P

Question: Which node CANNOT be a root of
this tree?
A. Node E B. Node G C. Node D D. None

CS200 - Graphs 19

Trees as Graphs

n  Tree: an undirected connected graph that
has no simple cycle.

n  Cycle: a path that begins and ends at the
same vertex and has length > 0

n  Simple cycle: does not contain the same
edge more than once

CS200 - Graphs 20

Theorems

A connected undirected graph with n
vertices must have at least n-1 edges
(otherwise some node in isolated.)

In a tree there is a unique path (no
repeated nodes) between any two nodes
(go up to common parent, go down to
other node.)

A connected graph with n-1
edges is a tree. If we add one edge to a
tree it gets a cycle, because there are then
two paths between the incident nodes

CS200 - Graphs 21

A B C D

E F G H

I J K L

M N O P

Spanning Trees

n  Spanning tree: A sub-graph of a connected
undirected graph G that contains all of G’s
vertices and enough of its edges to form a tree.

n  How to get a spanning tree:
q  Remove edges until you get a tree, never
 disconnecting the nodes in the tree
q  Add edges until you have a spanning tree, never

creating a cycle

CS200 - Graphs 22

Spanning Trees - DFS algorithm

dfsTree(in v:vertex)!
!Mark v as visited!
!for (each unvisited vertex u adjacent to v)!
! !Mark the edge from u to v!
! !dfsTree(u)!

CS200 - Graphs 23

Spanning Tree –
Depth First Search Example

A B C D

E F G H

I J K L

M N O P

CS200 - Graphs 24

Example

n  Suppose that an airline must reduce its flight schedule to save money. If its
original routes are as illustrated here, which flights can be discontinued to
retain service between all pairs of cities (where might it be necessary to
combine flights to fly from one city to another?)

Seattle
Chicago

Detroit SF

LA

San Diego

Denver

Dallas

St. Louis

Atlanta

Washington D.C.
NYC

Boston

Bangor

CS200 - Graphs 25

Question

n  Does Dijkstra’s algorithm lead to the
spanning tree with the minimal total
distance?

n  No.

CS200 - Graphs 26

Question

n  Does Dijkstra’s algorithm lead to the
spanning tree with the minimal total
distance? Dijkstra determines the shortest
path from a source to each node in the graph

n  No.
 Counter example: (s=A)
 Shortest paths from A?
 Minimal total distance
 spanning tree?

CS200 - Graphs 27

A
B

C

4

2
3

Minimum Spanning Tree

n  Minimum spanning tree
q  Spanning tree minimizing the sum of edge

weights

n  Example: Connecting each house in the
neighborhood to cable
q  Graph where each house is a vertex.
q  Need the graph to be connected, and minimize the

cost of laying the cables.

CS200 - Graphs 28

Prim’s Algorithm

n  Idea: incrementally build spanning tree by
adding the least-cost edge to the tree
q  Weighted graph
q  Find a set of edges

n  Touches all vertices
n  Minimal weight
n  Not all the edges may be used

CS200 - Graphs 29

g e f

d i

c b a

h

4

8 7

9

10

7 4

2

11

8 7

1 2

6

g

d

f e

i

c b

h

a

Prim’s Algorithm: Example
starting at d

 {(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) }

CS200 - Graphs 30

unique?

Prim’s Algorithm
prims(in v:Vertex)!
!// Determines a minimum spanning tree for a weighted!
!// connected, undirected graph whose weights are!
!// nonnegative, beginning with any vertex v.!
!Mark vertex v as visited and include it in
the minimum spanning tree!
!while (there are unvisited vertices) {!
! !find the least-cost edge (v, u) from a visited

! !vertex v to some unvisited vertex u!
! !Mark u as visited!
! !Add vertex u and the edge (v, u) to the !

! !minimum spanning tree!
!}!
!return minimum spanning tree!

CS200 - Graphs 31

Prim vs Dijkstra

n  Prim’s MST algorithm is very similar to
Dijkstra’s SSSP algorithm.

n  What is the difference?

CS200 - Graphs 32

Start from A

Do SSSP, do MST

CS200 - Graphs 33

Graphs Describing Precedence

n  Edge from x to y indicates x should come before y,
e.g.:
q  prerequisites for a set of courses
q  dependences between programs
q  dependences between statements
 a = 10
 b = 20
 c = a+b
q  set of tasks

CS200 - Graphs 34

Graphs Describing Precedence

Batman images are from the book “Introduction to bioinformatics algorithms”
CS200 - Graphs 35

Graphs Describing Precedence

n  Want an ordering of the vertices of the graph
that respects the precedence relation

q  Example: An ordering of CS courses

n  The graph must not contain cycles. WHY?

CS200 - Graphs 36

CS161	

CS200	

CS253	

CS270	

CS314	 CS320	 CS356	 CS370	 CT310	 CT320	

CS440	 CS410	 CS464	

CS160	

CS Courses Required for CS and ACT Majors

Question Is there a
cycle in this graph?
 A. Yes
B. No

Topological Sorting of DAGs
n  DAG: Directed Acyclic Graph
n  Topological sort: listing of nodes such that if (a,b)

is an edge, a appears before b in the list
n  Is a topological sort unique?

Question: Is a topological sort
unique?

CS200 - Graphs 38

A directed graph without cycles

a b c

d e f

g
a,g,d,b,e,c,f
a,b,g,d,e,f,c

CS200 - Graphs 39

Topological Sort - Algorithm 1
topSort1(in G:Graph)!
!n= number of vertices in G!
!for (step =1 through n)!
! !select a vertex v that has no successors!
! !aList.add(0,v)!
! !Delete from G vertex v and its edges !
!return aList!

•  Algorithm relies on the fact that in a DAG there is always
a vertex that has no successors.

•  Destructively modifies the graph.

CS200 - Graphs 40

Topological Sort - Algorithm 1

topSort1(in G:Graph)!
!n= number of vertices in G!
!for (step =1 through n)!

! !select a vertex v that has no successors!
! !aList.add(0,v)!
! !Delete from G vertex v and its edges !
!return aList!

a b c

d e f

g f cebdg a

CS200 - Graphs 41

Algorithm 2: Example 2

B C

E F

G H

I
I H, F, C, G, B, D, A,

CS200 - Graphs 42

E,

Topological Sort - Algorithm 2

n  Modification of DFS: Traverse tree using
DFS starting from all nodes that have no
predecessor.

n  Add a node to the list when ready to
backtrack.

CS200 - Graphs 43

Topological Sort - Algorithm 2
topSort2(in theGraph:Graph):List!
!s.createStack()!
!for (all vertices v in the graph theGraph) !
! !if (v has no predecessors) !
! ! !s.push(v)!
! ! !Mark v as visited!
!while (!s.isEmpty()) !
! !if (all vertices adjacent to the vertex on top of!
! ! !the stack have been visited) !
! ! !v = s.pop()!
! ! !aList.add(0, v) !
! !else !
! ! !Select an unvisited vertex u adjacent to vertex on top

! ! !of the stack!
! ! !s.push(u)!
! ! !Mark u as visited!
!return aList!

CS200 - Graphs 44

Algorithm 2: Example 1

a b c

d e f

g f c e b d g a

f c
e

b
d
g
a

CS200 - Graphs 45

Topological sorting solution

A B C

D E F

G H

I

1/18
10/15 11/14

12/13 9/16 2/17

6/7 3/8

4/5 Red edges represent spanning tree

CS200 - Graphs 46

Third topological sort algorithm
n  First two topological sort algorithms found nodes without

successors and then backtracked
n  Forward algorithm based on inDegrees

q  Copy all inDegrees to temporary inDegree tID
q  Repeat until all visited:
1.  Find new nodes without predecessors (tID 0)
2.  Put these in a list, or print them out (P5), making sure they

will not be selected again (e.g. set their tID to -1)
3.  Subtract 1 from tID of all successors of the nodes from

step 2

CS200 - Graphs 47

forward topological sort

CS200 - Graphs 48

A B C

D E F

G H

0,0 1,1

1,1 1,1

2,2
2,2

1,1

2,2

A B C

D E F

G H

0,-1 1,0

1,1 1,0

2,2
2,2

1,1

2,2

A

A B C

D E F

G H

0,-1 1,-1

1,0 1,-1

2,2
2,1

1,0

2,1

B D

A B C

D E F

G H

0,-1 1,-1

1,-1 1,-1

2,2
2,0

1,-1

2,0

C E

finish
the
animation

