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Tree traversal reminder 

A 

B 

D 

G 

C 

E 

H 

F 

I 

Pre order 

A B D G H C E F I 

In order 

G D H B A E C F I 

Post order 

G H D B E I F C A 

Level order 

A B C D E F G H I 



Connected Components 

n  The connected component of a node s is the largest set of nodes 
reachable from s. A generic algorithm for creating connected 
component(s): 

 
n  Upon termination, R is the connected component containing s. 

q  Breadth First Search (BFS):  explore in order of distance from s. 
q  Depth First Search (DFS):  explores edges from the most 

recently discovered node;  backtracks when reaching a dead-
end. 

3 

R = {s} 
while  
 add v to R 
 

∃edge(u,v) : u∈ R∧v ∉ R



Graph Traversals – Depth First Search 

n  Depth First Search starting at u
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   DFS(u): 
     mark u as visited and add u to R 
     for each edge (u,v) : 
       if v is not marked visited : 
          DFS(v) 
 



Depth First Search 

A B C D 

E F G H 

I J K L 

M N O P 
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Question 

n  What determines the order in which DFS 
visits nodes? 

n  The order in which a node picks its outgoing 
edges 
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Graph Traversal 
Depth First Search (DFS) 

dfs(in v:Vertex)!
!mark v as visited !
!for (each unvisited vertex u adjacent to v)!
! !dfs(u)

n  Need to track visited nodes 
n  Order of visiting nodes is not completely specified 

q  if nodes have priority, then the order may become deterministic 
    for (each unvisited vertex u adjacent to v in priority order) 

n  DFS applies to both directed and undirected graphs 
n  Which graph implementation is suitable? 



Depth first search algorithm 
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Iterative DFS: explicit Stack 
dfs(in v:Vertex) 

s – stack for keeping track of active vertices
s.push(v)
mark v as visited
while (!s.isEmpty())  {
 if (no unvisited vertices adjacent to the vertex on top of the stack) {
 s.pop()  //backtrack
 else {
  select unvisited vertex u adjacent to vertex on top of  the stack
  s.push(u)
  mark u as visited
 }
}
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Breadth First Search (BFS) 

n  Is like level order in 
trees 

n  Which is a BFS 
traversal starting 
from A? 

A.  A, B, C, D, … 
B.  A, B, F, E, … 
C.  A, E, F, B, … 
D.  A, B, E, F, … 
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A B C D 

E F G H 

I J K L 

M N O P 
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5 

4 

0 1 2 3 

Graph Traversal – 
Breadth First Search (BFS) 

A B C D 

E F G H 

I J K L 

M N O P 

Breadth First Search 

CS200 - Graphs 10 



BFS 

n  Similar to level order tree traversal 

n  DFS is a last visited first explored strategy 
      (uses a stack) 
 
n  BFS is a first visited first explored strategy 
      (uses a queue) 
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BFS 
bfs(in v:Vertex)!
!q – queue of nodes to be processed!
!q.enque(v)!
!mark v as visited!
!while(!q.isEmpty()) {!
! !w = q.dequeue()!
! !for (each unvisited vertex u adjacent to w) {!
! ! !mark u as visited!
! ! !q.enqueue(u)!
! !}!
!}!
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Trace this example 

5 

4 

0 
1 2 3 

A B C D 

E F G H 

I J K L 

M N O P 

bfs(in v:Vertex)!
!q – queue of nodes!
!q.enque(v)!
!mark v as visited!
!while(!q.isEmpty()) {!
! !w = q.dequeue()!
! !for (each unvisited vertex 

! ! !u adjacent to w) {!
! ! !mark u as visited!
! ! !q.enqueue(u)!
! !}!

!}!
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Graph Traversal 

n  Properties of BFS and DFS: 
q  Visit all vertices that are reachable from a given 

vertex 
q  Therefore DFS(v) and BFS(v) visit a connected 

component 

n  Computation time for DFS, BFS for a 
connected graph:  O(|V| + |E|) 

       WHY? 
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Complexity BFS / DFS 

n  Each node is marked at most once, and visited at most 
once.  

     
n  The adjacency list of each node is scanned only once.  
  
n  Therefore time complexity for BFS and DFS is 
                       O(|V|+|E|)  or O(n+m) 



Reachability 

n  Reachability 
q  v  is reachable from u 

n  if there is a (directed) path from u to v 

q  solved using BFS or DFS 
n  Transitive Closure (G*) 

q  G* has edge from u to v if v is reachable from u. 

CS200 - Graphs 16 



Trees as Graphs 

n  Tree: an undirected connected graph that 
has no cycles. 

 

A B C D 

E F G H 

I J K L 

M N O P 
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Rooted Trees 

n  A rooted tree is a tree in which one vertex 
has been designated as the root and every 
edge is directed away from the root 
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Example: Build rooted trees. 

 

A B C D 

E F G H 

I J K L 

M N O P 

Question: Which node CANNOT be a root of 
this tree?  
A. Node E   B. Node G   C. Node D  D. None 
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Trees as Graphs 

n  Tree: an undirected connected graph that 
has no simple cycle. 

n  Cycle: a path that begins and ends at the 
same vertex and has length > 0 

n  Simple cycle: does not contain the same 
edge more than once 
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Theorems 
 
A connected undirected graph with n 
vertices must have at least n-1 edges 
(otherwise some node in isolated.) 

In a tree there is a unique path (no 
repeated nodes) between any two nodes 
(go up to common parent, go down to 
other node.) 

A connected graph with n-1                           
edges is a tree. If we add one edge to a 
tree it gets a cycle, because there are then 
two paths between the incident nodes 
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A B C D 

E F G H 

I J K L 

M N O P 



Spanning Trees 

n  Spanning tree:  A sub-graph of a connected 
undirected graph G that contains all of G’s 
vertices and enough of its edges to form a tree. 
 

n  How to get a spanning tree:  
q  Remove edges until you get a tree, never  
   disconnecting the nodes in the tree 
q  Add edges until you have a spanning tree, never 

creating a cycle 
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Spanning Trees - DFS algorithm 

dfsTree(in v:vertex)!
!Mark v as visited!
!for (each unvisited vertex u adjacent to v)!
! !Mark the edge from u to v!
! !dfsTree(u)!
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Spanning Tree – 
Depth First Search Example 

A B C D 

E F G H 

I J K L 

M N O P 
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Example 

n  Suppose that an airline must reduce its flight schedule to save money. If its 
original routes are as illustrated here, which flights can be discontinued to 
retain service between all pairs of cities (where might it be necessary to 
combine flights to fly from one city to another?) 

Seattle 
Chicago 

Detroit SF 

LA 

San Diego 

Denver 

Dallas 

St. Louis 

Atlanta 

Washington D.C. 
NYC 

Boston 

Bangor 
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Question 

n  Does Dijkstra’s algorithm lead to the 
spanning tree with the minimal total 
distance? 

n  No.  
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Question 

n  Does Dijkstra’s algorithm lead to the 
spanning tree with the minimal total 
distance? Dijkstra determines the shortest 
path from a source to each node in the graph 

n  No.  
   Counter example: (s=A) 
   Shortest paths from A? 
   Minimal total distance 
      spanning tree? 
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Minimum Spanning Tree 

n  Minimum spanning tree 
q  Spanning tree minimizing the sum of edge 

weights 

n  Example: Connecting each house in the 
neighborhood to cable  
q  Graph where each house is a vertex.   
q  Need the graph to be connected, and minimize the 

cost of laying the cables. 
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Prim’s Algorithm 

n  Idea: incrementally build spanning tree by 
adding the least-cost edge to the tree 
q  Weighted graph 
q  Find a set of edges  

n  Touches all vertices 
n  Minimal weight 
n  Not all the edges may be used  

CS200 - Graphs 29 



g e f 

d i 

c b a 

h 

4 

8 7 

9 

10 

7 4 

2 

11 

8 7 

1 2 

6 

g 

d 

f e 

i 

c b 

h 

a 

Prim’s Algorithm: Example  
starting at d 

 {(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) } 
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Prim’s Algorithm 
prims(in  v:Vertex)!
!// Determines a minimum spanning tree for a weighted!
!// connected, undirected graph whose weights are!
!// nonnegative, beginning with any vertex v.!
!Mark vertex v as visited and include it in 
the minimum spanning tree!
!while (there are unvisited vertices) {!
! !find the least-cost edge (v, u) from a visited 

! !vertex v to some unvisited vertex u!
! !Mark u as visited!
! !Add vertex u and the edge (v, u) to the !

! !minimum spanning tree!
!}!
!return minimum spanning tree!
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Prim vs Dijkstra 

n  Prim’s MST algorithm is very similar to 
Dijkstra’s SSSP algorithm.  

n  What is the difference? 
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Start from A 

Do SSSP, do MST 
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Graphs Describing Precedence 

n  Edge from x to y indicates x should come before y, 
e.g.: 
q  prerequisites for a set of courses 
q  dependences between programs 
q  dependences between statements 
          a = 10 
          b = 20 
          c = a+b    
q  set of tasks                             
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Graphs Describing Precedence 

Batman images are from the book “Introduction to bioinformatics algorithms” 
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Graphs Describing Precedence 

n  Want an ordering of the vertices of the graph 
that respects the precedence relation  

q  Example:  An ordering of CS courses 

n  The graph must not contain cycles.  WHY? 
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CS161	  

CS200	  

CS253	  

CS270	  

CS314	  CS320	   CS356	   CS370	  CT310	   CT320	  

CS440	   CS410	  CS464	  

CS160	  

CS Courses Required for CS and ACT Majors 

Question Is there a  
cycle in this graph?  
 A. Yes       
B.  No 



Topological Sorting of DAGs 
n  DAG:  Directed Acyclic Graph 
n  Topological sort: listing of nodes such that if (a,b) 

is an edge, a appears before b in the list 
n  Is a topological sort unique? 

Question: Is a topological sort 
unique?  
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A directed graph without cycles 

a b c 

d e f 

g 
a,g,d,b,e,c,f 
a,b,g,d,e,f,c 
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Topological Sort - Algorithm 1 
topSort1(in G:Graph)!
!n= number of vertices in G!
!for (step =1 through n)!
! !select a vertex v that has no successors!
! !aList.add(0,v)!
! !Delete from G vertex v and its edges !
!return aList!

•  Algorithm relies on the fact that in a DAG there is always 
a vertex that has no successors.  

•  Destructively modifies the graph. 
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Topological Sort - Algorithm 1 

topSort1(in G:Graph)!
!n= number of vertices in G!
!for (step =1 through n)!

! !select a vertex v that has no successors!
! !aList.add(0,v)!
! !Delete from G vertex v and its edges !
!return aList!

a b c

d e f 

g f cebdg a
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Algorithm 2: Example 2 

B C 

E F 

G H 

I 
I H, F, C, G, B, D, A, 
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Topological Sort - Algorithm 2 

n  Modification of DFS:  Traverse tree using 
DFS starting from all nodes that have no 
predecessor. 

n  Add a node to the list when ready to 
backtrack. 
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Topological Sort - Algorithm 2 
topSort2( in theGraph:Graph):List!
!s.createStack()!
!for (all vertices v in the graph theGraph) !
! !if (v has no predecessors) !
! ! !s.push(v)!
! ! !Mark v as visited!
!while (!s.isEmpty()) !
! !if (all vertices adjacent to the vertex on top of!
! ! !the stack have been visited) !
! ! !v = s.pop()!
! ! !aList.add(0, v) !
! !else !
! ! !Select an unvisited vertex u adjacent to vertex on top 

! ! !of the stack!
! ! !s.push(u)!
! ! !Mark u as visited!
!return aList!
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Algorithm 2: Example 1 

a b c 

d e f 

g f c e b d g a 

f c 
e 

b 
d 
g 
a 
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Topological sorting solution 

A B C 

D E F 

G H 

I 

1/18 
10/15 11/14 

12/13 9/16 2/17 

6/7 3/8 

4/5 Red edges represent spanning tree 
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Third topological sort algorithm 
n  First two topological sort algorithms found nodes without 

successors and then backtracked 
n  Forward algorithm based on inDegrees 

q  Copy all inDegrees to temporary inDegree tID 
q  Repeat until all visited: 
1.  Find new nodes without predecessors (tID 0)  
2.  Put these in a list, or print them out (P5), making sure they 

will not be selected again (e.g. set their tID to -1) 
3.  Subtract 1 from tID of all successors of the nodes from 

step 2 
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forward topological sort 
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A B C 

D E F 

G H 

0,0 1,1 

1,1 1,1 

2,2 
2,2 

1,1 

2,2 

A B C 

D E F 

G H 

0,-1 1,0 

1,1 1,0 

2,2 
2,2 

1,1 

2,2 

A 

A B C 

D E F 

G H 

0,-1 1,-1 

1,0 1,-1 

2,2 
2,1 

1,0 

2,1 

B D 

A B C 

D E F 

G H 

0,-1 1,-1 

1,-1 1,-1 

2,2 
2,0 

1,-1 

2,0 

C E  

finish 
the  
animation 


