1. Given the following grammar for identifiers (Id):

 \[\text{Id} \ = \text{Let} \mid \text{Id Let} \mid \text{Id Dig} \]
 \[\text{Let} \ = \text{a} \mid \text{b} \mid \text{c} \]
 \[\text{Dig} \ = \text{0} \mid \text{1} \]

 write a regular expression defining identifiers

2. Given the following two grammars for matching parentheses

 Grammar 1: \[S = () \mid (S) \]

 Grammar 2: \[M = () \mid (M) \mid M \ \ M \]

 2a. Show a derivation of \(((())) \) using Grammar 1, starting with \(S \)

 2b. Show a derivation of \((()) () \) using Grammar 2, starting with \(M \)
2c. Is \((())\) produced by
 1. Grammar 1? (Y/N)
 2. Grammar 2? (Y/N)

2d. Is \((())()\) produced by
 1. grammar 1? (Y/N)
 2. grammar 2? (Y/N)

3. Complete the following table, keeping the operands in the same order

<table>
<thead>
<tr>
<th>Prefix expression</th>
<th>Infix expression</th>
<th>Postfix expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>* + a b c</td>
<td>(a+b) * c</td>
<td>a b + c *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a - b - c</td>
</tr>
<tr>
<td>* / a b + c d</td>
<td></td>
<td>a b c d - - *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>true or true and false</td>
</tr>
</tbody>
</table>