CS200 Spring 2017 written homework 2

name:
id:

1. Using the Master Theorem:

Let f be an increasing function that satisfies
$f(n)=a \cdot f(n / b)+c \cdot n^{d}$
whenever $n=b^{k}$, where k is a positive integer, $a \geq 1, b$ is an integer >1, and c and d are real numbers with c positive and d nonnegative. Then

$$
f(n)=\left\{\begin{array}{ll}
O\left(n^{d}\right) & \text { if } a<b^{d} \\
O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\
O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}
\end{array}\right\}
$$

What are the big-0 bounds recurrence relations? (Simplify logs and exponents.)
a) $f(n)=4 f(n / 2)+n$
b) $f(n)=2 f(n / 4)+n$
c) $f(n)=4 f(n / 4)+n^{2}$
d) $f(n)=2 f(n / 2)+n$
e) $f(n)=2 f(n / 2)+1$
f) $f(n)=f(n / 2)+1$
2. Which of the above describes the complexity of
a) Binary Search
b) Merge Sort
3. Given the following method:

```
public int recMax (int[] A){
        return recMax(A,0,A.length-1);
}
private int recMax(int[]A, int lo, int hi){
        if(lo==hi) return A[lo];
        else{
            int mid = (lo+hi)/2;
            int m1 = recMax(A,lo,mid);
            int m2 = recMax(A,mid+1,hi);
            return Math.max(m1, m2);
        }
}
```

a) Derive a recurrence $\mathrm{rM}(\mathrm{n})$ relation for $\operatorname{recMax}(\mathrm{A}, \mathrm{lo}, \mathrm{hi})$, where $\mathrm{n}=$ hi-lo+1.

$$
\begin{array}{ll}
\mathrm{rM}(\mathrm{n})=1 & \text { for } \mathrm{n}=1 \\
\mathrm{rM}(\mathrm{n})= & \text { for } \mathrm{n}>1
\end{array}
$$

b) Use the Master Theorem to solve the recurrence and obtain the big 0 complexity of recMax.

$$
r M(n)=O(\quad)
$$

4. Find a solution to the following recurrence relation, using repeated substitution:

$$
\begin{aligned}
& f(1)=2000 \\
& f(n)=1.1 \text { f(n-1) for } n>1
\end{aligned}
$$

