Recap: Question 1

If passwords are strings starting with an uppercase letter and ending in a single digit and characters in between may be either letters or numbers, how many passwords of length 4 are there?

Recap: Question 2

When writing a method called add(String s, int pos) to add a data element of type String to the pos entry in a singly linked list, what cases should be handled in the code?

Recap Question 3

- Legal? int $\mathrm{a}=5$ + (int b = 4);
- Spot the bugs:
double [] scores = \{50.2, 121.0, 35.03, 14.27 \};
double mine;
for (int in = $1 ;$ in $=4 ;++$ in) $\{$
mine $=$ mine + scores[in]; $\}$
- What does this do when called with abc(scores,4):
public double abc(double anArray[], int x) \{
if ($x==1$) \{ return anArray[0]; else \{ return anArray[x-1] * abc(anArray, $x-1$); \}\}

Grammars: Defining

Languages

Walls \& Mirrors Ch. 6.2
Rosen Ch. 13.1

Language, grammar

- Postfix expressions form a language: a set of valid strings ("sentences"), so do infix expressions
- In order to manipulate these sentences we need to know which strings are valid sentences (belong to the language)
- To define the valid sentences we need a mechanism to construct them: grammars
- A grammar defines a set of valid symbols and a set of production rules to create sentences out of symbols.

Arithmetic Postfix expressions: symbols

- Symbols: integer numbers and operators int : digit sequence
- There are many mechanisms to define a digit sequence, e.g. regular grammars, or regular expressions: dig: "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"
num: dig ${ }^{+}$
- operator: "+" |"-" |"*" |"/"
| stands for: OR (choice)
+ stands for: 1 or more of these (repetition) * stand for? don't confuse the META symbols | ${ }^{+}$with the language symbols "+", "-", ...

Arithmetic Postfix expressions

- An arithmetic postfix expression is
a number, or
two arithmetic postfix expressions followed by an operator
Notice that the operators in this example are binary
- The mechanism (context free grammar) to describe this needs more than choice and repetition, it also needs to be able to describe (block) structure APFE ::= num | APFE APFE operator
Notice that context free grammars are recursive in nature.

Quick check

Which are valid APFEs:
ab+
$123^{*}+$
123 + *
12 * +3
$1122-33+44$ *

If valid, what is their corresponding infix expression?

Parsing

$$
5 \text { * } 3+(8-4)
$$

1. Recognize the structure of the expression terminology: PARSE the expression
2. Build the tree (while parsing)

Definitions

- Language is a set of strings of symbols from a finite alphabet. what is the alphabet for APFEs? JavaPrograms $=\{$ string $w: w$ is a syntactically correct Java program\}
- Grammar is a set of rules that construct valid strings (sentences).

CONSTRUCTION

- Parsing Algorithm determines whether a string is a member of the language.

ANALYSIS

Basics of Grammars

Example: a Backus-Naur form (BNF) for identifiers

$$
\begin{aligned}
& \text { <identifier }>=\text { <letter }>\mid \text { <identifier }>\text { <letter }>\mid \\
& \text { <identifier><digit> } \\
& \text { <letter> }=\mathrm{a}|\mathrm{~b}| \ldots|\mathrm{z}| \mathrm{A}|\mathrm{~B}| \ldots \mid \mathrm{Z} \\
& \text { <digit> }=0|1| \ldots \mid 9
\end{aligned}
$$

- $x \mid y$ means "x or y "
- $x y$ means " x followed by y "
- <word> is called a non-terminal, which can be replaced by other symbols depending on the rules.
- Terminals are symbols (e.g., letters, words) from which legal strings are constructed.
- Rules have the form <word> = ...

This is called Context Free, because where-ever <word> occurs in a right hand side, it can be replaced by one of its right hand sides.

Identifier grammar

$$
\begin{aligned}
& \text { <identifier> }= \text { <letter> | <identifier> <letter> | } \\
& \text { <identifier> <digit> } \mid \\
& \text { <letter> }=\mathrm{a}|\mathrm{~b}| \ldots|\mathrm{z}| \mathrm{A}|\mathrm{~B}| \ldots \mid \mathrm{Z} \\
& \text { <digit> }=0|1| \ldots \mid 9
\end{aligned}
$$

Use all the alternatives of <identifier> to make 5 different shortest possible identifiers

Example

Consider the language that the following grammar defines:

$$
<W\rangle=x y \mid x<W>y
$$

Write strings that are in this language, which ones are right / wrong?
A. $x y$
B. $x y, x x y y$
C. $x y, x y x y, ~ x y x y x y, ~ x y x y x y x y ~ ~$
D. xy, xxyy, xxxyyy, xxxxyyyy

Can you describe the language in English?

Formally: Phrase-Structure Grammars

A phrase-structure grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ consists of a vocabulary V , a subset T of V consisting of terminal elements, a start symbol S from V, and a finite set of productions P .

- Example: Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ where $\mathrm{V}=\{0,1, \mathrm{~A}, \mathrm{~S}\}, \mathrm{T}=\{0,1\}, \mathrm{S}$ is the start symbol and $P=\{S->A A, A->0, A->1\}$.
The language generated by G is the set of all strings of terminals that are derivable from the starting symbol S, i.e.,

$$
L(G)=\left\{w \in T^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

Example as Phrase Structure

$$
\begin{aligned}
& B N F:\langle W\rangle=x y|x<W\rangle y \\
& V=\{x, y, W\} \\
& T=\{x, y\} \\
& S=W \\
& P=\{W->x y, W->x W y\}
\end{aligned}
$$

Derivation:

Starting with start symbol, applying productions, by replacing a non-terminal by a rhs alternative, to obtain a legal string of terminals:

$$
\text { e.g., } W->x W y, W->x x y y
$$

$V=\{x, y, W\}$
$T=\{x, y\}$
$S=W$
$P=\{W->x y, W->x W y\}$

Derive:

xy
xxxyyy

Types of Phrase-Structure
Grammars

- Type 0: no restrictions on productions
- Type 1 (Context Sensitive): productions such that $w 1->w 2$, where $w 1=l A r, w 2=l w r, A$ is a nonterminal, l and r (called "the context") are strings of 0 or more terminals or nonterminals and w is a nonempty string of terminals or nonterminals. A can now only derive w in the right context l r.
- Type 2 (Context Free): productions such that $w 1->w 2$ where $w 1$ is a single nonterminal including S, and $w 2$ a sequence of terminals and nonterminals
Equivalent to BNF

Type 3: Regular Languages

- A language generated by a type 3 (regular) grammar can have productions only of the form $A->a B$ or $A->a$ where A $\& B$ are non-terminals and a is a terminal.
- Notice that $A->x A$ is repetition (tail recursion) and $A->a B$ and $A->c D$ and $A->x$ is choice
- Regular expressions are equivalent to regular grammars

Type 3: Regular Expressions

- Regular expressions are equivalent to regular grammars
- Regular expressions are defined recursively over a set I :
- \varnothing is the empty set $\}$
- λ is the set containing the empty string $\{$ "" $\}$
- x whenever $x \varepsilon I$ is the set $\{x\}$
- (AB) concatenates any element of set A and any element of set B
- ($\mathrm{A} \cup \mathrm{B}$) or $(\mathrm{A} \mid \mathrm{B})$ is the union of sets A and B
- A^{*} is 0 or more repetitions of elements in A
- A+ is 1 or more repetitions of elements in A
- Example: $0(0 \mid 1)^{*}$
- Regular expression notation (...) (...)* (...)+ is often used in context free grammars as well (nice notation).
- Java has implementations of regular expressions.

Identifiers

A grammar for identifiers:

$$
\begin{aligned}
& \text { <identifier> }=\text { <letter> } \mid \text { <identifier> <letter> } \mid \\
& \text { <identifier> <digit> } \\
& \text { <letter> }=\mathrm{a}|\mathrm{~b}| \ldots|\mathrm{z}| \mathrm{A}|\mathrm{~B}| \ldots \mid \mathrm{Z} \\
& \text { <digit> }=0|1| \ldots \mid 9
\end{aligned}
$$

Notation [a-z] stands for $\mathrm{a}|\mathrm{b}| \ldots \mid \mathrm{Z}$

- How do we determine if a string w is a valid Java identifier, i.e. belongs to the language of Java identifiers?
- We derive the string from the start symbol!

Recognizing Java Identifiers


```
isId(in w:string):boolean
    if (w is of length 1)
        if (w is a letter)
        return true
        else
        return false
    else if (the last character of w is a letter
        or a digit)
        return isId(w minus its last character)
        else
            return false
```

// or you could check is_letter(first) and
// is_letter_or digit_sequence(rest) in a loop
// going left to right through the input

Prefix Expressions

- Grammar for prefix expression (e.g., * - a b c):
<prefix> = <identifier> | <operator> <prefix> <prefix>
<operator> $=+|-|*| /$
<identifier> $=\mathrm{a}|\mathrm{b}| \ldots \mid \mathrm{z}$
or
<identifier> = [a-z]|[A-Z]

Recognizing Prefix Expressions Top Down

Grammar:

```
<prefix> = <identifier> | <operator> <prefix> <prefix>
<operator> \(=+\left|-\left.\right|^{*}\right| /\)
<identifier> \(=\mathrm{a}|\mathrm{b}| \ldots \mid \mathrm{z}\)
```

Given "* - a b c"

```
1. <prefix>
2. <operator> <prefix> <prefix>
    * <prefix> <prefix>
    * <operator> <prefix> <prefix> <prefix>
    * \llprefix> <prefix> <prefix>
    * - <identifier> <prefix> <prefix>
    * - a <prefix> <prefix>
```


Recognizing Prefix Expressions

```
boolean prefix() {
    if (identifier()) { // rule <prefix> = <identifier>
    return true;
    }
    else { //<prefix> = <operator> <prefix> <prefix>
        if (operator()) {
            if (prefix()) {
                if (prefix()) {
                return true;
            }
            else { return false;}
            }
            else { return false;}
            }
        else { return false; }
    }
}
// notice that reading and advancing the characters is left out
// you will play with this in recitation
```


Postfix Expressions

- Grammar for postfix expression (e.g., a b c * +): <postfix> = <identifier> | <postfix> <postfix> <operator> <operator> $=+|-|*| /$
<identifier> $=[\mathrm{a}-\mathrm{z}]$

Recognizing a bc*+

Do it do it

> We have already seen a way of recognizing and evaluating postfix expr-s, using a stack.
<postfix> <postfix> <operator>
<identifier> <postfix> <operator>
a <postfix> <operator>
a <postfix> <postfix> <operator> <operator>
a <identifier> <postfix> <operator> <operator>
a b <postfix> <operator> <operator>
a b <identifier> <operator> <operator>
a b c <operator> <operator>
a b c * <operator>
$a b c *+$
what does red mean?
which non terminal is replaced?

Palindromes

Palindromes $=\{w: w$ reads the same left to right as right to left, when spaces and special characters are ignored, and uppercase is translated to lower case\}

Examples: RADAR, racecar, [A nut for a jar of tuna], [Madam, I'm Adam], [Sir, l'm Iris]

Recursive definition:
w is a palindrome if and only if
the first and last characters of w are the same
And
w minus its first and last characters is a palindrome
Base case(s)?

Grammar for Palindromes

Why not

$<c h><p a l><c h>$?

<pal> = empty string | <ch> | a <pal> a | ... | Z <pal> Z
$<c h>=[\mathrm{a}-\mathrm{z}] \mid[\mathrm{A}-\mathrm{Z}]$

Recursive Method for Recognizing
 Palindrome

isPal(in w:string):boolean
if (w is an empty string or of length 1) \{ return true
\} else if (w's first and last characters are the same) \{
return isPal(w minus its first and last characters)
\} else \{
return false
\}

