Recap: Question 1

If passwords are strings starting with an uppercase letter and ending in a single digit and characters in between may be either letters or numbers, how many passwords of length 4 are there?
Recap: Question 2

When writing a method called `add(String s, int pos)` to add a data element of type `String` to the `pos` entry in a singly linked list, what cases should be handled in the code?
Recap Question 3

- Legal? int a = 5 + (int b = 4);

- Spot the bugs:

 double [] scores = {50.2, 121.0, 35.03, 14.27};
 double mine;
 for (int in = 1; in = 4; ++in) {
 mine = mine + scores[in];
 }

- What does this do when called with abc(scores,4):

 public double abc(double anArray[], int x) {
 if (x == 1) { return anArray[0];}
 else { return anArray[x-1] * abc(anArray, x-1); }
 }
Grammars: Defining Languages

Walls & Mirrors Ch. 6.2
Rosen Ch. 13.1
Language, grammar

- Postfix expressions form a language: a set of valid strings ("sentences"), so do infix expressions.
- In order to manipulate these sentences we need to know which strings are valid sentences (belong to the language).
- To define the valid sentences we need a mechanism to construct them: grammars.
- A grammar defines a set of valid symbols and a set of production rules to create sentences out of symbols.
Arithmetic Postfix expressions: symbols

- Symbols: integer numbers and operators
 - int: digit sequence
- There are many mechanisms to define a digit sequence, e.g. regular grammars, or regular expressions:
 - dig: “0”|”1”|”2”|”3”|”4”|”5”|”6”|”7”|”8”|”9”
 - num: dig+
- operator: “+” | “-” | “*” |”/”

| stands for: OR (choice) what does * stand for?
+ stands for: 1 or more of these (repetition)

don’t confuse the META symbols | + with the language symbols “+”, “-”, …
Arithmetic Postfix expressions

- An arithmetic postfix expression is a number, or

 two arithmetic postfix expressions followed by an operator

Notice that the operators in this example are binary

- The mechanism (context free grammar) to describe this needs more than choice and repetition, it also needs to be able to describe (block) structure

```
APFE ::= num | APFE APFE operator
```

Notice that context free grammars are recursive in nature.
Quick check

Which are valid APFEs:

a b +
1 2 3 * +
1 2 3 + *
1 2 * + 3
11 22 – 33 + 44 *

If valid, what is their corresponding infix expression?
1. Recognize the structure of the expression terminology: PARSE the expression

2. Build the tree (while parsing)
Definitions

- **Language** is a set of strings of symbols from a finite alphabet.

 JavaPrograms = \{ \text{string } w : w \text{ is a syntactically correct Java program} \}

- **Grammar** is a set of rules that construct valid strings (sentences).

- **Parsing Algorithm** determines whether a string is a member of the language.

 what is the alphabet for APFEs?
Basics of Grammars

Example: a Backus-Naur form (BNF) for identifiers

\[
<\text{identifier}> = <\text{letter}> \; | \; <\text{identifier}> <\text{letter}> \; | \\
<\text{identifier}> <\text{digit}>
\]

\[
<\text{letter}> = a \; | \; b \; | \; \ldots \; | \; z \; | \; A \; | \; B \; | \; \ldots \; | \; Z
\]

\[
<\text{digit}> = 0 \; | \; 1 \; | \; \ldots \; | \; 9
\]

- \(x \; | \; y\) means “\(x\) or \(y\)”
- \(x \; y\) means “\(x\) followed by \(y\)”
- \(<\text{word}>\) is called a non-terminal, which can be replaced by other symbols depending on the rules.
- Terminals are symbols (e.g., letters, words) from which legal strings are constructed.
- Rules have the form \(<\text{word}> = \ldots\)

This is called Context Free, because where-ever \(<\text{word}>\) occurs in a right hand side, it can be replaced by one of its right hand sides.
Identifier grammar

\[<\text{identifier}> = <\text{letter}> \mid <\text{identifier}> <\text{letter}> \mid <\text{identifier}> <\text{digit}> \mid<br\/>
\]

\[<\text{letter}> = a \mid b \mid \ldots \mid z \mid A \mid B \mid \ldots \mid Z\]
\[<\text{digit}> = 0 \mid 1 \mid \ldots \mid 9\]

Use all the alternatives of \(<\text{identifier}\rangle\) to make 5 different shortest possible identifiers
Example

Consider the language that the following grammar defines:

\[<W> = xy | x <W> y \]

Write strings that are in this language, which ones are right / wrong?

A. xy
B. xy, xxyy
C. xy, xyxy, xyxyxy, xyxyxyxy
D. xy, xxyy, xxyyyy, xxxxyyyy

Can you describe the language in English?
Formally: Phrase-Structure Grammars

A phrase-structure grammar $G= (V, T, S, P)$ consists of a vocabulary V, a subset T of V consisting of terminal elements, a start symbol S from V, and a finite set of productions P.

- Example: Let $G= (V, T, S, P)$ where $V= \{0,1,A,S\}$, $T= \{0,1\}$, S is the start symbol and $P= \{S \rightarrow AA, A \rightarrow 0, A \rightarrow 1\}$.

The language generated by G is the set of all strings of terminals that are derivable from the starting symbol S, i.e.,

$$L(G) = \left\{ w \in T^* \mid S \Rightarrow^* w \right\}$$
Example as Phrase Structure

BNF: \[<W> = xy | x <W> y \]

\[V = \{ x, y, W \} \]

\[T = \{ x, y \} \]

\[S = W \]

\[P = \{ W \rightarrow xy, W \rightarrow xWy \} \]

Derivation:

Starting with start symbol, applying productions, by replacing a non-terminal by a rhs alternative, to obtain a legal string of terminals:

e.g., \[W \rightarrow xWy, W \rightarrow xxyy \]
Derivation

\[V = \{x, y, W\} \]
\[T = \{x, y\} \]
\[S = W \]
\[P = \{W \rightarrow xy, W \rightarrow xWy\} \]

Derive:

- \(xy\)
- \(xxx\)
- \(yyy\)
Types of Phrase-Structure Grammars

- Type 0: no restrictions on productions
- Type 1 (Context Sensitive): productions such that
 \[w_1 \rightarrow w_2, \text{ where } w_1 = lAr, w_2 = lwr, A \text{ is a nonterminal, } l \text{ and } r \text{ (called “the context”) are strings of 0 or more terminals or nonterminals and } w \text{ is a nonempty string of terminals or nonterminals. } A \text{ can now only derive } w \text{ in the right context } l \ r. \]
- Type 2 (Context Free): productions such that
 \[w_1 \rightarrow w_2 \text{ where } w_1 \text{ is a single nonterminal including } S, \text{ and } w_2 \text{ a sequence of terminals and nonterminals} \]

Equivalent to BNF
Type 3: Regular Languages

- A language generated by a type 3 (regular) grammar can have productions only of the form $A \rightarrow aB$ or $A \rightarrow a$ where A & B are non-terminals and a is a terminal.

- Notice that $A \rightarrow xA$ is repetition (tail recursion) and $A \rightarrow aB$ and $A \rightarrow cD$ and $A \rightarrow x$ is choice

- Regular expressions are equivalent to regular grammars
Type 3: Regular Expressions

- Regular expressions are equivalent to regular grammars.
- Regular expressions are defined recursively over a set I:
 - \emptyset is the empty set \{ \}
 - λ is the set containing the empty string \{ "" \}
 - x whenever $x \in I$ is the set \{ x \}
 - (AB) concatenates any element of set A and any element of set B
 - $(A \cup B)$ or $(A \mid B)$ is the union of sets A and B
 - A^* is 0 or more repetitions of elements in A
 - A^+ is 1 or more repetitions of elements in A

Example: $0(0 \mid 1)^*$

- Regular expression notation $(\ldots)(\ldots)^*(\ldots)^+$ is often used in context free grammars as well (nice notation).
- Java has implementations of regular expressions.
Identifiers

A grammar for identifiers:

\[
\text{<identifier> } = \text{<letter> } | \text{<identifier> <letter>} | \text{<identifier> <digit>}
\]

\[
\text{<letter> } = a | b | \ldots | z | A | B | \ldots | Z
\]

\[
\text{<digit> } = 0 | 1 | \ldots | 9
\]

Notation \([a-z]\) stands for \(a | b | \ldots | z\)

- How do we determine if a string \(w\) is a valid Java identifier, i.e. belongs to the language of Java identifiers?
 - We derive the string from the start symbol!
Recognizing Java Identifiers

isId(in w:string):boolean
 if (w is of length 1)
 if (w is a letter)
 return true
 else
 return false
 else if (the last character of w is a letter or a digit)
 return isId(w minus its last character)
 else
 return false

// or you could check is_letter(first) and // is_letter_or_digit_sequence(rest) in a loop // going left to right through the input
Prefix Expressions

- Grammar for prefix expression (e.g., * - a b c):

 \[
 \langle \text{prefix} \rangle = \langle \text{identifier} \rangle \mid \langle \text{operator} \rangle \ \langle \text{prefix} \rangle \ \langle \text{prefix} \rangle
 \]

 \[
 \langle \text{operator} \rangle = + \mid - \mid * \mid /
 \]

 \[
 \langle \text{identifier} \rangle = a \mid b \mid \ldots \mid z
 \]

 or

 \[
 \langle \text{identifier} \rangle = [a-z] \mid [A-Z]
 \]
Recognizing Prefix Expressions

Top Down

Grammar:

\[\text{<prefix>} = \text{<identifier>} \mid \text{<operator>} \text{<prefix>} \text{<prefix>} \]

\[\text{<operator>} = + \mid - \mid * \mid / \]

\[\text{<identifier>} = a \mid b \mid \ldots \mid z \]

Given “* - a b c”

1. <prefix>
2. <operator> <prefix> <prefix>
3. * <prefix> <prefix>
4. * <operator> <prefix> <prefix> <prefix>
5. * - <prefix> <prefix> <prefix>
6. * - <identifier> <prefix> <prefix>
7. * - a <prefix> <prefix>
8. * - a <identifier> <prefix>
9. * - a b <prefix>
10. * - a b <identifier>
11. * - a b c
Recognizing Prefix Expressions

```java
boolean prefix() {
    if (identifier()) { // rule <prefix> = <identifier>
        return true;
    }
    else { // <prefix> = <operator> <prefix> <prefix>
        if (operator()) {
            if (prefix()) {
                if (prefix()) {
                    return true;
                } else {
                    return false;
                }
            } else {
                return false;
            }
        } else {
            return false;
        }
    }
    else { // <prefix> = <identifier>
        return true;
    }
}
// notice that reading and advancing the characters is left out
// you will play with this in recitation
```
Postfix Expressions

Grammar for postfix expression (e.g., a b c * +):

$postfix = <identifier> | <postfix> <postfix> <operator>

$operator = + | - | * | /

$identifier = [a-z]
Recognizing a b c *+

We have already seen a way of recognizing and evaluating postfix expr-s, using a stack.

Do it do it

<postfix>
<postfix> <postfix> <operator>
<identifier> <postfix> <operator>
a <postfix> <operator>
a <postfix> <postfix> <operator> <operator>
a <identifier> <postfix> <operator> <operator>
a <postfix> <postfix> <operator> <operator>
a b <postfix> <operator> <operator>
a b <identifier> <operator> <operator>
a b c <operator> <operator>
a b c * <operator>
a b c * +

what does red mean?
which non terminal is replaced?
Palindromes

Palindromes = \{w : w \text{ reads the same left to right as right to left, when spaces and special characters are ignored, and uppercase is translated to lower case}\}

Examples: RADAR, racecar, [A nut for a jar of tuna], [Madam, I’m Adam], [Sir, I’m Iris]

Recursive definition:

\(w\) is a palindrome if and only if

the first and last characters of \(w\) are the same

And

\(w\) minus its first and last characters is a palindrome

Base case(s)?
Grammar for Palindromes

<\textit{pal}> = \textit{empty string} \mid \textit{ch} \mid a \textit{pal} a \mid \ldots \mid Z \textit{pal} Z

<\textit{ch}> = [a-z] \mid [A-Z]

Why not <\textit{ch}> <\textit{pal}> <\textit{ch}>?
Recursive Method for Recognizing Palindrome

isPal(in w:string):boolean
 if (w is an empty string or of length 1) {
 return true
 } else if (w’s first and last characters are the same) {
 return isPal(w minus its first and last characters)
 } else {
 return false
 }
Recursive Method for Recognizing Palindrome

```java
Recursive Method for Recognizing Palindrome

isPal(in w: string): boolean
    if (w is an empty string or of length 1) {
        return true
    } else if (w’s first and last characters are the same) {
        return isPal(w minus its first and last characters)
    } else {
        return false
    }
```

Example:
isPal ("RADAR")
 TRUE

isPal ("ADA")
 TRUE

isPal ("D")
 TRUE