
 CS200: Recurrence Relations 
and the Master Theorem 

Rosen Ch. 8.1 - 8.3 
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Recurrence Relations:  
An Overview 
n  What is a recurrence? 

q  A recursively defined sequence … 

Example 

q  Arithmetic progression: a, a+d, a+2d, …, a+nd
n  a0 = a
n  an = an-1 + d
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Formal Definition 

n  A Sequence is called a solution of a Recurrence 
relation + Initial conditions (“base case”), if its 
terms satisfy the recurrence relation 

n  Example:  an = an-1 + 2,  a1 = 1   

€ 

A recurrence relation for the sequence an{ } is an equation
that expresses an  in terms of one of more of the previous
terms of the sequence, namely, a0,a1,...an−1,  for all integers
n with n ≥ n0 where n0 is a nonnegative integer.
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a1?, a2? a3? 
solution? 

an = 1 + 2(n-1) = 2n-1 
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Compound Interest 

n  You deposit $10,000 in a savings account that 
yields 10% yearly interest.  How much money 
will you have after 1,2, … years? (b is 
balance, r is rate) 

bn = bn−1 + rbn−1 = (1+ r)
n b0

b0 =10,000
r = 0.1
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Modeling with Recurrence 

n  Suppose that the number of bacteria in a 
colony triples every hour 
q  Set up a recurrence relation for the number of 

bacteria after n hours have elapsed. 
q  100 bacteria are used to begin a new colony. 
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Recursively defined functions  
and recurrence relations 
n  A recursive function 

f(0) = a (base case) 
f(n) = f(n-1) + d for n > 0 (recursive step) 

n  The above recursively defined function generates 
the sequence 
a0 = a
an = an-1 + d

n  A recurrence relation produces a sequence, an 
application of a recursive function produces a 
value from the sequence 
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How to Approach Recursive Relations 
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Recursive Functions Sequence of Values 

f(0) = 0 (base case) 
f(n) = f(n-1) + 2 for n > 0 
(recursive part) 

 

f(0) = 0  
f(1) = f(0)+2 = 2
f(2) = f(1)+2 = 4  
f(3) = f(2) +2 = 6  

 Closed Form?(solution,  
explicit formula) 
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Find a recursive function 

n  Give a recursive definition of f(n)=an, where a is 
a nonzero real number and n is a nonnegative 
integer.  

n  Give a recursive definition of factorial f(n) = n! 

n  Rosen Chapter 5 example 3-2   pp. 346 
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f(0) = 1,  
f(n) = a * f(n-1) 

f(0) = 1 
f(n) = n* f(n-1) 



Solving recurrence relations 

Solve a0 = 2; an = 3an-1, n > 0
(1) What is the recursive function? 
(2) What is the sequence of values? 
 
Hint: Solve by repeated substitution, recognize 

a pattern, check your outcome 
n  a0 = 2; a1=3(2)=6; a2=3(a1)=3(3(2)); a3=…  
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Connection to Complexity… 
 Divide-and-Conquer 

Basic idea:  
 Take large problem and divide it into smaller problems 
until problem is trivial, then combine parts to make solution. 

 
Recurrence relation for the number of steps required: 

   f(n) = a f(n / b) + g(n) 
 
n/b : the size of the sub-problems solved 
 
a : number of sub-problems 
 
g(n) : steps necessary to split sub-problems and  
         combine solutions to sub-problems 
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Example: Binary Search 
public int binSearch (int myArray[], int first, 

     int last, int value) {
// returns the index of value or -1 if not in the array
int index;
if (first > last) { index = -1; }
else {
   int mid = (first + last)/2;
   if (value == myArray[mid]) { index = mid; }
   else if (value < myArray[mid]) {

      index = binSearch(myArray, first, mid-1, value); 
      }

   else { 
         index = binSearch(myArray, mid+1, last, value); 
      }

} 
return index;

} 

What are a, b, and g(n)? 

€ 

f (n) = a ⋅ f (n /b)+ g(n)
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Estimating big-O (Master Theorem) 
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€ 

Let f  be an increasing function that satisfies
f (n) = a ⋅ f (n /b) + c ⋅ nd

whenever n = bk,  where k is a positive integer,  a ≥1, b is 
an integer > 1,  and c and d are real numbers with c positive
and d nonnegative. Then

f (n) =

O nd( ) if a < bd

O nd logn( ) if a = bd

O n logb a( ) if a > bd

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

Section 8.3 in Rosen 
Proved using induction 
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f (n) =

O nd( ) if a < bd

O nd logn( ) if a = bd

O n logb a( ) if a > bd
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Binary Search using the Master Theorem 

For binary search 
f(n) = a f(n / b) +c .nd 

          = 1 f(n / 2) + c 

 

Therefore, d = 0 (to make nd  a constant), b = 2, a = 1. 
bd = 20 = 1 

It	sa,sfies	the	second	condi,on	of	the	Master	theorem.	

So,  f(n) = O(ndlog2n) = O(n0log2n) = O(log2n) 
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Complexity of MergeSort with Master 
Theorem  
public void mergesort(Comparable[] theArray, int first, int last){
// Sorts the items in an array into ascending order.      

  // Precondition: theArray[first..last] is an array. 
  // Postcondition: theArray[first..last] is a sorted permutation  
if (first < last) {
 int mid = (first + last) / 2;  // midpoint of the array
 mergesort(theArray, first, mid);
 mergesort(theArray, mid + 1, last);
 merge(theArray, first, mid, last);
}// if first >= last, there is nothing to do

}
n  M(n) is the number of operations performed by mergeSort on an array 

of size n
n  M(0)=M(1) = 1    M(n) = 2M(n/2) + c.n
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WHY + n ? 

the cost of merging two  arrays  of size n/2 into one of size n 



Complexity of MergeSort 

Master theorem
M(n) = 2M(n/2) + c.n
for the mergesort algorithm 
 
f(n) = a f(n / b) + c.nd 

          = 2 f(n / 2) + c.n1 

Notice that c does not play a role(big O) 
d = 1, b = 2, a = 2. Therefore  bd = 21 = 2 
It	sa,sfies	the	second	condi,on	of	the	Master	theorem. 
So,  f(n) = O(ndlog2n) 
              = O(n1log2n) 
              = O(nlog2n) 
 

15 
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f (n) =

O nd( ) if a < bd

O nd logn( ) if a = bd

O n logb a( ) if a > bd
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Best Case QuickSort Recurrence 

Best case: assume perfect division in equal sized partitions 

n  a= 
n  b= 
n  c= 
n  d= 
n  O(?) 

€ 

f (n) = a ⋅ f (n /b)+ cnd

€ 

f (n) =

O nd( ) if a < bd

O nd logn( ) if a = bd

O n logb a( ) if a > bd
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Worst Case: n + (n-1) + … +3 + 2+ 1= O(n2) 
 



CS320 Excursion: Tractability 

n  A problem that is solvable using an algorithm 
with polynomial worst-case complexity is 
called tractable. 

n  If the polynomial has a high degree or if the 
coefficients are extremely large, the algorithm 
may take an extremely long time to solve the 
problem. 
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Intractable vs Unsolvable problems 

n  If the problem cannot be solved using an 
algorithm with worst-case polynomial time 
complexity, such problems are called 
intractable.  Have you seen such problems? 

n  If it can be shown that no algorithm exists for 
solving them, such problems are called 
unsolvable. 
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Hanoi 

CS200 - Recurrence Relations 19 

 
// pegs are numbers, via is computed 
// number of moves are counted 
// empty base case 
public void hanoi(int n, int from, int to){ 

 if (n>0) { 
  int via = 6 - from - to; 
  hanoi(n-1,from, via); 
  System.out.println("move disk " + n +  
               " from " + from + " to " + to); 
  count++; 
  hanoi(n-1,via,to); 
 } 

} 
 

Recurrence for 
    number of moves?  
Solution? 
How did we prove  
     this earlier? 



Permutations 
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public void permute(int from) { 
 if (from == P.length-1) {// suffix size one, nothing to permute 

 System.out.println(Arrays.toString(P));     
 else {   // put every item in first place and recur 

  for (int i=from; i<P.length;i++) { 
    swapP(from,i); // put i in first position of suffix  
    permute(from+1); // permute the rest 
    swapP(from,i); // PUT IT BACK 
  } 

          }   
} 
 

complexity? number of permutations? recurrence relation? 



Interesting Intractable Problems 

n  Boolean Satisfiability 
(A v ~B v C) ^ (~A v C v ~D) ^ (B v ~C v D) 
 
n  TSP 

n  only solution: 
     trial and error 
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how many options for these problems?  
 

2n 
 

n! 


