
 CS200: Recurrence Relations
and the Master Theorem

Rosen Ch. 8.1 - 8.3

CS200 - Recurrence Relations 1

Recurrence Relations:
An Overview
n  What is a recurrence?

q  A recursively defined sequence …

Example

q  Arithmetic progression: a, a+d, a+2d, …, a+nd
n  a0 = a
n  an = an-1 + d

2 CS200 - Recurrence Relations

3

Formal Definition

n  A Sequence is called a solution of a Recurrence
relation + Initial conditions (“base case”), if its
terms satisfy the recurrence relation

n  Example: an = an-1 + 2, a1 = 1

€

A recurrence relation for the sequence an{ } is an equation
that expresses an in terms of one of more of the previous
terms of the sequence, namely, a0,a1,...an−1, for all integers
n with n ≥ n0 where n0 is a nonnegative integer.

CS200 - Recurrence Relations

a1?, a2? a3?
solution?

an = 1 + 2(n-1) = 2n-1

4

Compound Interest

n  You deposit $10,000 in a savings account that
yields 10% yearly interest. How much money
will you have after 1,2, … years? (b is
balance, r is rate)

bn = bn−1 + rbn−1 = (1+ r)
n b0

b0 =10,000
r = 0.1

CS200 - Recurrence Relations

Modeling with Recurrence

n  Suppose that the number of bacteria in a
colony triples every hour
q  Set up a recurrence relation for the number of

bacteria after n hours have elapsed.
q  100 bacteria are used to begin a new colony.

5 CS200 - Recurrence Relations

Recursively defined functions
and recurrence relations
n  A recursive function

f(0) = a (base case)
f(n) = f(n-1) + d for n > 0 (recursive step)

n  The above recursively defined function generates
the sequence
a0 = a
an = an-1 + d

n  A recurrence relation produces a sequence, an
application of a recursive function produces a
value from the sequence

6 CS200 - Recurrence Relations

How to Approach Recursive Relations

7

Recursive Functions Sequence of Values

f(0) = 0 (base case)
f(n) = f(n-1) + 2 for n > 0
(recursive part)

f(0) = 0
f(1) = f(0)+2 = 2
f(2) = f(1)+2 = 4
f(3) = f(2) +2 = 6

 Closed Form?(solution,
explicit formula)

CS200 - Recurrence Relations

Find a recursive function

n  Give a recursive definition of f(n)=an, where a is
a nonzero real number and n is a nonnegative
integer.

n  Give a recursive definition of factorial f(n) = n!

n  Rosen Chapter 5 example 3-2 pp. 346

8 CS200 - Recurrence Relations

f(0) = 1,
f(n) = a * f(n-1)

f(0) = 1
f(n) = n* f(n-1)

Solving recurrence relations

Solve a0 = 2; an = 3an-1, n > 0
(1) What is the recursive function?
(2) What is the sequence of values?

Hint: Solve by repeated substitution, recognize

a pattern, check your outcome
n  a0 = 2; a1=3(2)=6; a2=3(a1)=3(3(2)); a3=…

9 CS200 - Recurrence Relations

a

10

Connection to Complexity…
 Divide-and-Conquer

Basic idea:
 Take large problem and divide it into smaller problems
until problem is trivial, then combine parts to make solution.

Recurrence relation for the number of steps required:

 f(n) = a f(n / b) + g(n)

n/b : the size of the sub-problems solved

a : number of sub-problems

g(n) : steps necessary to split sub-problems and
 combine solutions to sub-problems

CS200 - Recurrence Relations

11

Example: Binary Search
public int binSearch (int myArray[], int first,

 int last, int value) {
// returns the index of value or -1 if not in the array
int index;
if (first > last) { index = -1; }
else {
 int mid = (first + last)/2;
 if (value == myArray[mid]) { index = mid; }
 else if (value < myArray[mid]) {

 index = binSearch(myArray, first, mid-1, value);
 }

 else {
 index = binSearch(myArray, mid+1, last, value);
 }

}
return index;

}

What are a, b, and g(n)?

€

f (n) = a ⋅ f (n /b)+ g(n)

CS200 - Recurrence Relations

Estimating big-O (Master Theorem)

12

€

Let f be an increasing function that satisfies
f (n) = a ⋅ f (n /b) + c ⋅ nd

whenever n = bk, where k is a positive integer, a ≥1, b is
an integer > 1, and c and d are real numbers with c positive
and d nonnegative. Then

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

Section 8.3 in Rosen
Proved using induction

CS200 - Recurrence Relations

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

!

"

#
#

$

#
#

%

&

#
#

'

#
#

13

Binary Search using the Master Theorem

For binary search
f(n) = a f(n / b) +c .nd

 = 1 f(n / 2) + c

Therefore, d = 0 (to make nd a constant), b = 2, a = 1.
bd = 20 = 1

It	sa,sfies	the	second	condi,on	of	the	Master	theorem.	

So, f(n) = O(ndlog2n) = O(n0log2n) = O(log2n)

CS200 - Recurrence Relations

Complexity of MergeSort with Master
Theorem
public void mergesort(Comparable[] theArray, int first, int last){
// Sorts the items in an array into ascending order.

 // Precondition: theArray[first..last] is an array.
 // Postcondition: theArray[first..last] is a sorted permutation
if (first < last) {
 int mid = (first + last) / 2; // midpoint of the array
 mergesort(theArray, first, mid);
 mergesort(theArray, mid + 1, last);
 merge(theArray, first, mid, last);
}// if first >= last, there is nothing to do

}
n  M(n) is the number of operations performed by mergeSort on an array

of size n
n  M(0)=M(1) = 1 M(n) = 2M(n/2) + c.n

14 CS200 - Recurrence Relations

WHY + n ?

the cost of merging two arrays of size n/2 into one of size n

Complexity of MergeSort

Master theorem
M(n) = 2M(n/2) + c.n
for the mergesort algorithm

f(n) = a f(n / b) + c.nd

 = 2 f(n / 2) + c.n1

Notice that c does not play a role(big O)
d = 1, b = 2, a = 2. Therefore bd = 21 = 2
It	sa,sfies	the	second	condi,on	of	the	Master	theorem.
So, f(n) = O(ndlog2n)
 = O(n1log2n)
 = O(nlog2n)

15

€

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

"

$

%
$

&

'
$

(
$

CS200 - Recurrence Relations

16

Best Case QuickSort Recurrence

Best case: assume perfect division in equal sized partitions

n  a=
n  b=
n  c=
n  d=
n  O(?)

€

f (n) = a ⋅ f (n /b)+ cnd

€

f (n) =

O nd() if a < bd

O nd logn() if a = bd

O n logb a() if a > bd

"

$

%
$

&

'
$

(
$

Worst Case: n + (n-1) + … +3 + 2+ 1= O(n2)

CS320 Excursion: Tractability

n  A problem that is solvable using an algorithm
with polynomial worst-case complexity is
called tractable.

n  If the polynomial has a high degree or if the
coefficients are extremely large, the algorithm
may take an extremely long time to solve the
problem.

17 CS200 - Recurrence Relations

Intractable vs Unsolvable problems

n  If the problem cannot be solved using an
algorithm with worst-case polynomial time
complexity, such problems are called
intractable. Have you seen such problems?

n  If it can be shown that no algorithm exists for
solving them, such problems are called
unsolvable.

18 CS200 - Recurrence Relations

Hanoi

CS200 - Recurrence Relations 19

// pegs are numbers, via is computed
// number of moves are counted
// empty base case
public void hanoi(int n, int from, int to){

 if (n>0) {
 int via = 6 - from - to;
 hanoi(n-1,from, via);
 System.out.println("move disk " + n +
 " from " + from + " to " + to);
 count++;
 hanoi(n-1,via,to);
 }

}

Recurrence for
 number of moves?
Solution?
How did we prove
 this earlier?

Permutations

CS200 - Recurrence Relations 20

public void permute(int from) {
 if (from == P.length-1) {// suffix size one, nothing to permute

 System.out.println(Arrays.toString(P));
 else { // put every item in first place and recur

 for (int i=from; i<P.length;i++) {
 swapP(from,i); // put i in first position of suffix
 permute(from+1); // permute the rest
 swapP(from,i); // PUT IT BACK
 }

 }
}

complexity? number of permutations? recurrence relation?

Interesting Intractable Problems

n  Boolean Satisfiability
(A v ~B v C) ^ (~A v C v ~D) ^ (B v ~C v D)

n  TSP

n  only solution:
 trial and error

CS200 - Recurrence Relations 21

how many options for these problems?

2n

n!

