

CS200: Recurrence Relations

 and the Master TheoremRosen Ch. 8.1-8.3

Recurrence Relations:

 An Overview- What is a recurrence?
- A recursively defined sequence ...

Example

- Arithmetic progression: $a, a+d, a+2 d, \ldots, a+n d$
- $a_{0}=a$
- $a_{\mathrm{n}}=a_{\mathrm{n}-1}+d$

Formal Definition

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one of more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots a_{n-1}$, for all integers n with $n \geq n_{0}$ where n_{0} is a nonnegative integer.

- A Sequence is called a solution of a Recurrence relation + Initial conditions ("base case"), if its terms satisfy the recurrence relation
- Example: $a_{n}=a_{n-1}+2, a_{1}=1$
a_{1} ?, a_{2} ? a_{3} ?
solution?

$$
a_{n}=1+2(n-1)=2 n-1
$$

Compound Interest

- You deposit \$10,000 in a savings account that yields 10% yearly interest. How much money will you have after $1,2, \ldots$ years? (b is balance, r is rate)

$$
\begin{aligned}
& b_{n}=b_{n-1}+r b_{n-1}=(1+r)^{n} b_{0} \\
& b_{0}=10,000 \\
& r=0.1
\end{aligned}
$$

Modeling with Recurrence

- Suppose that the number of bacteria in a colony triples every hour
- Set up a recurrence relation for the number of bacteria after n hours have elapsed.
- 100 bacteria are used to begin a new colony.

Recursively defined functions

 and recurrence relations- A recursive function

$$
\begin{aligned}
& f(0)=a \text { (base case) } \\
& f(n)=f(n-1)+d \text { for } \mathrm{n}>0 \text { (recursive step) }
\end{aligned}
$$

- The above recursively defined function generates the sequence
$a_{0}=a$
$a_{n}=a_{n-1}+d$
- A recurrence relation produces a sequence, an application of a recursive function produces a value from the sequence

How to Approach Recursive Relations

$f(0)=0$ (base case)
$f(n)=f(n-1)+2$ for $\mathrm{n}>0$
(recursive part)

Closed Form?(solution, explicit formula)

Find a recursive function

- Give a recursive definition of $f(n)=a^{n}$, where a is a nonzero real number and n is a nonnegative integer.

$$
\begin{aligned}
& f(0)=1, \\
& f(n)=a * f(n-1)
\end{aligned}
$$

- Give a recursive definition of factorial $f(n)=n$!

$$
\begin{aligned}
& f(0)=1 \\
& f(n)=n^{*} f(n-1)
\end{aligned}
$$

- Rosen Chapter 5 example 3-2 pp. 346

Solving recurrence relations

Solve $a_{0}=2 ; a_{n}=3 a_{n-1}, n>0$ (1) What is the recursive function?
(2) What is the sequence of values?

Hint: Solve by repeated substitution, recognize a pattern, check your outcome

- $a_{0}=2 ; a_{1}=3(2)=6 ; a_{2}=3\left(a_{1}\right)=3(3(2)) ; a_{3}=\ldots$

Connection to Complexity...

Divide-and-Conquer

Basic idea:

Take large problem and divide it into smaller problems until problem is trivial, then combine parts to make solution.

Recurrence relation for the number of steps required:

$$
f(n)=a f(n / b)+g(n)
$$

n / b : the size of the sub-problems solved
a : number of sub-problems
$g(n)$: steps necessary to split sub-problems and combine solutions to sub-problems

Example: Binary Search

```
public int binSearch (int myArray[], int first,
                int last, int value) {
    // returns the index of value or -1 if not in the array
    int index;
    if (first > last) { index = -1; }
    else {
        int mid = (first + last)/2;
        if (value == myArray[mid]) { index = mid; }
        else if (value < myArray[mid]) {
            index = binSearch(myArray, first, mid-1, value);
    }
                else {
            index = binSearch(myArray, mid+1, last, value);
        }
    }
    return index;
}
What are a, b, and g(n)?
                                    f(n)=a\cdotf(n/b)+g(n)
```


Estimating big-O (Master Theorem)

Let f be an increasing function that satisfies

$$
f(n)=a \cdot f(n / b)+c \cdot n^{d}
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geq 1, b$ is an integer >1, and c and d are real numbers with c positive and d nonnegative. Then

$$
f(n)=\left\{\begin{array}{ll}
O\left(n^{d}\right) & \text { if } a<b^{d} \\
O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\
O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}
\end{array}\right\} \begin{aligned}
& \text { Section } 8.3 \text { in Rosen } \\
& \text { Proved using induction }
\end{aligned}
$$

Binary Search using the Master Theorem

For binary search

$$
\begin{aligned}
f(n) & =a f(n / b)+c . n^{d} \\
& =1 f(n / 2)+c
\end{aligned}
$$

$$
f(n)=\left\{\begin{array}{ll}
O\left(n^{d}\right) & \text { if } a<b^{d} \\
O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\
O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}
\end{array}\right\}
$$

Therefore, $d=0$ (to make n^{d} a constant), $b=2, a=1$.
$b^{d}=2^{0}=1$
It satisfies the second condition of the Master theorem.
So, $f(n)=O\left(n^{d} \log _{2} n\right)=O\left(n^{0} \log _{2} n\right)=\boldsymbol{O}\left(\log _{2} n\right)$

Complexity of MergeSort with Master ${ }^{〔 500}$ Theorem

public void mergesort(Comparable[] theArray, int first, int last)\{
// Sorts the items in an array into ascending order.
// Precondition: theArray[first.last] is an array.
// Postcondition: theArray[first.last] is a sorted permutation
if (first < last) \{
int mid = (first + last) / 2; // midpoint of the array
mergesort(theArray, first, mid);
mergesort(theArray, mid + l, last);
merge(theArray, first, mid, last);
\}// if first >= last, there is nothing to do
\}

- $M(n)$ is the number of operations performed by mergeSort on an array of size n
- $\mathrm{M}(0)=\mathrm{M}(1)=1 \quad \mathrm{M}(\mathrm{n})=2 M(n / 2)+\mathrm{c} . n \quad \mathrm{WHY}+\mathrm{n}$?
the cost of merging two arrays of size $n / 2$ into one of size n

Complexity of MergeSort

Master theorem
$M(n)=2 M(n / 2)+c . n$ for the mergesort algorithm

$$
\begin{aligned}
f(n) & =a f(n / b)+c . n^{d} \\
& =2 f(n / 2)+c . n^{I}
\end{aligned}
$$

$$
f(n)=\left\{\begin{array}{ll}
O\left(n^{d}\right) & \text { if } a<b^{d} \\
O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\
O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}
\end{array}\right\}
$$

Notice that c does not play a role(big O)
$d=1, b=2, a=2$. Therefore $b^{d}=2^{l}=2$
It satisfies the second condition of the Master theorem.

$$
\text { So, } \begin{aligned}
f(n) & =O\left(n^{d} \log _{2} n\right) \\
& =O\left(n^{l} \log _{2} n\right) \\
& =\boldsymbol{O}\left(\boldsymbol{n} \log _{2} n\right)
\end{aligned}
$$

Best Case QuickSort Recurrence

$$
f(n)=a \cdot f(n / b)+c n^{d}
$$

Best case: assume perfect division in equal sized partitions

- $\mathrm{a}=$
- $\mathrm{b}=$
- $C=$
- $d=$
- O(?)

$$
f(n)=\left\{\begin{array}{ll}
O\left(n^{d}\right) & \text { if } a<b^{d} \\
O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\
O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}
\end{array}\right\}
$$

Worst Case: $\mathrm{n}+(\mathrm{n}-1)+\ldots+3+2+1=\mathrm{O}\left(\mathrm{n}^{2}\right)$

CS320 Excursion: Tractability

- A problem that is solvable using an algorithm with polynomial worst-case complexity is called tractable.
- If the polynomial has a high degree or if the coefficients are extremely large, the algorithm may take an extremely long time to solve the problem.

Intractable vs Unsolvable problems

- If the problem cannot be solved using an algorithm with worst-case polynomial time complexity, such problems are called intractable. Have you seen such problems?
- If it can be shown that no algorithm exists for solving them, such problems are called unsolvable.

Hanoi

// pegs are numbers, via is computed
// number of moves are counted
// empty base case
public void hanoi(int n, int from, int to) \{ if $(n>0)$ \{
int via $=\mathbf{6}$ - from - to;
hanoi(n-1,from, via);

Recurrence for

 number of moves?
Solution?

How did we prove this earlier?

System.out.println("move disk" + $n+$
" from " + from + " to " + to);
count++; hanoi(n-1,via,to);

Permutations

public void permute(int from) \{ if (from == P.length-1) $\{/ /$ suffix size one, nothing to permute System.out.println(Arrays.toString(P));
else \{ // put every item in first place and recur for (int i=from; i<P.length;i++) \{ swapP(from,i); // put i in first position of suffix permute(from +1); // permute the rest swapP(from,i); // PUT IT BACK

\}
complexity? number of permutations? recurrence relation?

Interesting Intractable Problems

- Boolean Satisfiability 2^{n}
$(A \vee \sim B \vee C)^{\wedge}(\sim A \vee C \vee \sim D)^{\wedge}(B \vee \sim C \vee D)$
Touring lowa
- TSP $n!$
- only solution: trial and error

how many options for these problems?

