Graph Traversals
Tree traversal reminder

Pre order
A B D G H C E F I

In order
G D H B A E C F I

Post order
G H D B E I F C A

Level order
A B C D E F G H I
The connected component of a node \(s \) is the largest set of nodes reachable from \(s \). A generic algorithm for creating connected component(s):

\[
\begin{align*}
R &= \{s\} \\
\text{while } & \exists \text{edge}(u, v): u \in R \land v \notin R \\
& \text{add } v \text{ to } R
\end{align*}
\]

Upon termination, \(R \) is the connected component containing \(s \).
- Breadth First Search (BFS): explore in order of distance from \(s \).
- Depth First Search (DFS): explores edges from the most recently discovered node; backtracks when reaching a dead-end.
Graph Traversals – Depth First Search

- Depth First Search starting at u

DFS(u):
 mark u as visited and add u to R
 for each edge (u,v) :
 if v is not marked visited :
 DFS(v)
Depth First Search
Question

- What determines the order in which DFS visits nodes?

- The order in which a node picks its outgoing edges
Depth first search algorithm

dfs(in v:Vertex)
 mark v as visited
 for (each unvisited vertex u adjacent to v)
 dfs(u)

- Need to track visited nodes
- Order of visiting nodes is not completely specified
 - if nodes have priority, then the order may become deterministic
 for (each unvisited vertex u adjacent to v in priority order)
- DFS applies to both directed and undirected graphs
- Which graph implementation is suitable?
Iterative DFS: explicit Stack

dfs(in v:Vertex)
 s – stack for keeping track of active vertices
 s.push(v)
 mark v as visited
 while (!s.isEmpty()) {
 if (no unvisited vertices adjacent to the vertex on top of the stack) {
 s.pop() //backtrack
 } else {
 select unvisited vertex u adjacent to vertex on top of the stack
 s.push(u)
 mark u as visited
 }
 }
Breadth First Search (BFS)

- Is like level order in trees
- Which is a BFS traversal starting from A?

A. A, B, C, D, ...
B. A, B, F, E, ...
C. A, E, F, B, ...
D. A, B, E, F, ...
Breadth First Search

Graph Traversal – Breadth First Search (BFS)

CS200 - Graphs
BFS

- Similar to level order tree traversal

- DFS is a **last visited first explored** strategy
 (uses a stack)

- BFS is a **first visited first explored** strategy
 (uses a queue)
BFS

\textbf{bfs(in v:Vertex)}

- \texttt{q} – queue of nodes to be processed
- \texttt{q.enqueue(v)}
- mark \texttt{v} as visited

\texttt{while(!q.isEmpty())} {
 \texttt{w = q.dequeue()}
 \texttt{for (each unvisited vertex u adjacent to w)} {
 mark \texttt{u} as visited
 \texttt{q.enqueue(u)}
 }
}
bfs(in v:Vertex)
q – queue of nodes
q.enqueue(v)
mark v as visited
while(!q.isEmpty()) {
 w = q.dequeue()
 for (each unvisited vertex u adjacent to w) {
 mark u as visited
 q.enqueue(u)
 }
}
Graph Traversal

- Properties of BFS and DFS:
 - Visit all vertices that are reachable from a given vertex
 - Therefore DFS(v) and BFS(v) visit a connected component

- Computation time for DFS, BFS for a connected graph: $O(|V| + |E|)$

WHY?
Complexity BFS / DFS

- Each node is marked at most once, and visited at most once.

- The adjacency list of each node is scanned only once.

- Therefore time complexity for BFS and DFS is $O(|V|+|E|)$ or $O(n+m)$
Reachability

- Reachability
 - \(v \) is reachable from \(u \)
 - if there is a (directed) path from \(u \) to \(v \)
 - solved using BFS or DFS
- Transitive Closure (\(G^* \))
 - \(G^* \) has edge from \(u \) to \(v \)
 - if \(v \) is reachable from \(u \)

Do it for:
Trees as Graphs

- Tree: an undirected connected graph that has no cycles.
Rooted Trees

- A **rooted tree** is a tree in which one vertex has been designated as the root and every edge is directed away from the root.
Example: Build rooted trees.

Question: Which node CANNOT be a root of this tree?
A. Node E B. Node G C. Node D D. None
Trees as Graphs

- **Tree**: an undirected connected graph that has no simple cycle.
- **Cycle**: a path that begins and ends at the same vertex and has length > 0
- **Simple cycle**: does not contain the same edge more than once
Theorems

A connected undirected graph with n vertices must have at least $n-1$ edges (otherwise some node is isolated.)

In a tree there is a unique path (no repeated nodes) between any two nodes (go up to common parent, go down to other node.)

A connected graph with $n-1$ edges is a tree. If we add one edge to a tree it gets a cycle, because there are then two paths between the incident nodes.
Spanning Trees

- **Spanning tree:** A sub-graph of a connected undirected graph G that contains all of G’s vertices and enough of its edges to form a tree.

- How to get a spanning tree:
 - From the whole graph, remove edges until you get a tree, never disconnecting the nodes in the tree
 - From the set of nodes, add edges until you have a spanning tree, never creating a cycle
Spanning Trees - DFS algorithm

dfsTree(in v:vertex)

Mark v as visited

for (each unvisited vertex u adjacent to v)

Mark the edge from u to v

dfsTree(u)
Spanning Tree —
Depth First Search Example
Suppose that an airline must reduce its flight schedule to save money. If its original routes are as illustrated here, which flights can be discontinued to retain service between all pairs of cities (where might it be necessary to combine flights to fly from one city to another?)
Question

- Does Dijkstra’s algorithm lead to the spanning tree with the minimum total distance?

- No.
Question

- Does Dijkstra’s algorithm lead to the spanning tree with the minimum total distance? Dijkstra determines the shortest path from a source to each node in the graph.

- No.

Counter example: (s=A) Shortest paths from A? Minimal total distance spanning tree?
Minimum Spanning Tree

- Minimum spanning tree
 - Spanning tree minimizing the sum of edge weights

- Example: Connecting each house in the neighborhood to cable
 - Graph where each house is a vertex.
 - Need the graph to be connected, and minimize the cost of laying the cables.
Prim’s Algorithm

- Idea: incrementally build spanning tree by adding the least-cost edge to the tree
 - Weighted graph
 - Find a set of edges
 - Touches all vertices
 - Minimal weight
 - Not all the edges may be used
Prim’s Algorithm: Example starting at d

{(d,c), (c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) }
Prim’s Algorithm

prims(in v:Vertex)
 // Determines a minimum spanning tree for a weighted
 // connected, undirected graph whose weights are
 // nonnegative, beginning with any vertex v.
 Mark vertex v as visited and include it in the minimum spanning tree
while (there are unvisited vertices) {
 find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u
 Mark u as visited
 Add vertex u and the edge (v, u) to the minimum spanning tree
}
return minimum spanning tree
Prim vs Dijkstra

- Prim’s MST algorithm is very similar to Dijkstra’s SSSP algorithm.

- What is the difference?
Do Prim’s Minimum Spanning Tree Algorithm, Source: S
Draw MST

Do Dijkstra’s Shortest Path algorithm, source S
Draw MPT
Graphs Describing Precedence

- Edge from x to y indicates x should come before y, e.g.:
 - prerequisites for a set of courses
 - dependences between programs
 - dependences between statements

 $a = 10$
 $b = 20$
 $c = a + b$
 - set of tasks
Graphs Describing Precedence

Batman images are from the book “Introduction to bioinformatics algorithms”
Graphs Describing Precedence

- Want an ordering of the vertices of the graph that respects the precedence relation
 - Example: An ordering of CS courses
- The graph must not contain cycles. WHY?
CS Courses Required for CS and ACT Majors

Question: Is there a cycle in this graph?
A. Yes
B. No
Topological Sorting of DAGs

- **DAG**: Directed Acyclic Graph
- **Topological sort**: listing of nodes such that if \((a,b)\) is an edge, \(a\) appears before \(b\) in the list
- Is a topological sort unique?

Question: Is a topological sort unique?
A directed graph without cycles

CS200 - Graphs
Topological Sort - Algorithm 1

topSort1(in G:Graph)
 n = number of vertices in G
 for (step = 1 through n)
 select a vertex v that has no successors
 aList.add(0,v)
 Delete from G vertex v and its edges
 return aList

• Algorithm relies on the fact that in a DAG there is always a vertex that has no successors.
• Destructively modifies the graph.
Topological Sort - Algorithm 1

topSort1(in G:Graph)
 n= number of vertices in G
 for (step =1 through n)
 select a vertex v that has no successors
 aList.add(0,v)
 Delete from G vertex v and its edges
 return aList
Algorithm 2: Example 2

E, B, G, C, F, H, I
Topological Sort - Algorithm 2

- Modification of DFS: Traverse tree using DFS starting from all nodes that have no predecessor.

- Add a node to the list when ready to backtrack.
Topological Sort - Algorithm 2

topSort2(in theGraph:Graph):List
 s.createStack()
 for (all vertices v in the graph theGraph)
 if (v has no predecessors)
 s.push(v)
 Mark v as visited
 while (!s.isEmpty())
 if (all vertices adjacent to the vertex on top of the stack have been visited)
 v = s.pop()
 aList.add(0, v)
 else
 Select an unvisited vertex u adjacent to vertex on top of the stack
 s.push(u)
 Mark u as visited
 return aList
Algorithm 2: Example 1
Topological sorting solution

Red edges represent spanning tree
Third topological sort algorithm

- First two topological sort algorithms found nodes without successors and then backtracked
- **Forward** algorithm based on inDegrees
 - Copy all inDegrees to temporary inDegree `inCount`
 - Repeat until all visited:
 1. Find new nodes without predecessors (`inCount 0`)
 2. Put these in a list, or print them out (P5), making sure they will not be selected again (e.g. set their `inCount` to -1)
 3. Subtract 1 from `inCount` of all successors of the nodes from step 2
forward topological sort

A
B D
C E

finish the animation
forward topological sort

A
B D
C E
F G
H