

Fun and Games with Graphs

river bank A

river bank B

Is it possible to travel across every bridge without crossing any bridge more than once?

Eulerian paths/circuits

- Eulerian path: a path that visits each edge in the graph once
- Eulerian circuit: a cycle that visits each edge in the graph once
- Is there a simple criterion that allows us to determine whether a graph has an Eulerian circuit or path?

Theorems about

Eulerian Paths \& Circuits

- Theorem: A connected multigraph has an Euler path iff it has exactly two vertices of odd degree.
- Theorem: A connected multigraph with at least two vertices has an Euler circuit iff each vertex has an even degree.
- A Hamiltonian path/circuit: path/circuit that visits every vertex exactly once.
- Defined for directed and undirected graphs

Does any graph have a Hamiltonian circuit or a Hamiltonian path?

Hamiltonian Paths/Circuits

- Is there an efficient way to determine whether a graph has a Hamiltonian circuit?
- NO!
- This problem belongs to a class of problems for which it is believed there is no efficient (polynomial running time) algorithm.
- What is an algorithm for doing this?
- What is its complexity?

The Traveling Salesman Problem

TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that

13,509 cities and towns in the US that have more than 500 residents

Using Hamiltonian Circuits

- Examine all possible Hamiltonian circuits and select one of minimum total length
- With n cities..
- (n-1)! Different Hamiltonian circuits
- Ignore the reverse ordered circuits
- ($\mathrm{n}-1$)! $/ 2$
- With 50 cities
- 12,413,915,592,536,072,670,862,289,047,373,3 75,038,521,486,354,677,760,000,000,000 routes
- How would a approximating algorithm for TSP work?

Planar Graphs

- You are designing a chip
connections between any two units cannot cross

http://www.dmoma;org/

Planar Graphs

- You are designing a chip connections between any two units cannot cross
- The graph describing the chip must be planar

http://en.wikipedia.org/wiki/Planar_graph

Chip Design

- You want more than planarity: the lengths of the connections need to be as short as possible (faster, and less heat is generated)
- We are now designing 3D chips, less constraint w.r.t. planarity, and shorter distances, but harder to build.

http://www.dmoma;org/

Graph Coloring

- A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color

Chromatic number

- The least number of colors needed for a coloring of this graph.
- The chromatic number of a graph G is denoted by χ (G)

The four color theorem

- The chromatic number of a planar graph is no greater than four
- This theorem was proved by a (theorem prover) program!

