CS 220: Discrete Structures and their Applications

Loop Invariants
Chapter 3 in zybooks
Program verification

How do we know our program works correctly?

In this lecture we will focus on a tool for verifying the correctness of programs that involve loops.
pre- and post-conditions

Precondition: what’s true before a block of code
Postcondition: what’s true after a block of code

Example: computing the square root of a number

Precondition: the input x is a positive real number
Postcondition: the output is a number y such that $y^2 = x$
pre- and post-conditions

Precondition: what’s true before a block of code
Postcondition: what’s true after a block of code

Example: sorting a list of numbers

def sort(a_list):
 # code for sorting the list

Precondition: a_list is a list of n numbers in arbitrary order
Postcondition: the list is permutation of the input list and is sorted in ascending order, i.e.

 a_list[i] ≤ a_list[i+1] for i ∈ {0,...,n-2}
programming as a contract

Specifying what each method does
- Specify it in a comment before/after method's header

Precondition
- What is assumed to be true before the method is executed
- **Caller obligation**

Postcondition
- Specifies what will happen if the preconditions are met - what the method guarantees to the caller
- **Method obligation**
def factorial(n) :
 '''
 precondition: n >= 0
 postcondition: return value equals n!
 '''
def factorial(n):

 precondition: n >= 0
 postcondition: return value equals n!

 if (n < 0): raise ValueError
What about postconditions?

```python
def factorial(n) :
    '''
    precondition:  n >= 0
    postcondition:  return value equals n!
    '''
    if (n < 0) : raise ValueError

assert factorial(5)==120
```

Can use assertions to verify that postconditions hold
Loop invariants as a way of reasoning about the state of your program

\[\text{pre-condition: } n > 0\]
\[i = 0\]
\[\text{while } (i < n) :\]
\[\quad i = i + 1\]

\[\text{post-condition: } i = n\]

We want to prove the post-condition: \(i = n\) right after the loop
Example: loop index value after a loop

// precondition: n>=0
i = 0
// i<=n loop invariant
while (i < n):
 // i < n test passed
 // AND
 // i<=n loop invariant
 i = i + 1
 // i <= n loop invariant
// i>=n WHY?
// AND
// i <= n
// → i==n

So we can conclude the obvious:

i==n right after the loop

But what if the body were:

i = i+2 ?
Loop invariants

A way to reason about the correctness of a program

A loop invariant is a predicate
 ■ that is true directly before the loop executes
 ■ that is true before and after each repetition of the loop body
 ■ and that is true directly after the loop has executed

i.e., it is kept invariant by the loop.
If we can prove that the loop invariant holds before the loop and that the loop body keeps the loop invariant true, then we can infer that not test AND loop invariant holds after the loop terminates.

Combined with the loop condition, the loop invariant allows us to reason about the behavior of the loop.
Example: sum of elements in an array

```python
def total(a_list) :
    sum = 0
    i = 0
    // sum == sum of elements from 0...i-1
    while (i < n) :
        // sum == sum of elements 0...i-1
        sum += a_list[i]
        i++
        // sum == sum of elements 0...i-1
        // i==n (previous example) AND
        // sum == sum elements 0...i-1
        // \rightarrow sum == sum of elements 0...n-1
    return sum
```
Loop invariant for selection sort

def selection_sort (a_list) :
 for i in range(len(a_list) - 1) :
 min = i
 for j in range(i+1, len(a_list)) :
 if (a_list[j] < a_list[min]) :
 min = j
 a_list[i], a_list[min] = a_list[min], a_list[i]

Invariant?
Loop invariant for selection sort

def selection_sort (a_list) :
 for i in range(len(a_list) - 1) :
 min = i
 for j in range(i+1, len(a_list)) :
 if (a_list[j] < a_list[min]) :
 min = j
 a_list[i],a_list[min] = a_list[min],a_list[i]

Invariant: a_list[0]...a_list[i-1] are in sorted order

for i in range(n) :
 body is equivalent with
 while(i<n) :
 body
 i = i+1
Closed Curve Game

There are two players, Red and Blue. The game is played on a rectangular grid of points:

```
  1 2 3 4 5 6 7
  1 . . . . . . .
  2 . . . . . . .
  3 . . . . . . .
  4 . . . . . . .
  5 . . . . . . .
  6 . . . . . . .
```

Red draws a red line segment, either horizontal or vertical, connecting any two adjacent points on the grid that are not yet connected by a line segment. Blue takes a turn by doing the same thing, except that the line segment drawn is blue. Red's goal is to form a closed curve of red line segments. Blue's goal is to prevent Red from doing so.

See http://www.cs.uofs.edu/~mccloske/courses/cmps144/invariants_lec.html
Closed Curve Game

We can express this game as a computer program:

while (more line segments can be drawn):
 Red draws line segment
 Blue draws line segment

Question: Does either Red or Blue have a winning strategy?
Closed Curve Game

Answer: Yes! Blue is guaranteed to win the game by responding to each turn by Red in the following manner:

```java
if (Red drew a horizontal line segment) {
    let i and j be such that Red's line segment connects (i,j) with (i,j+1)
    if (i>1) {
        draw a vertical line segment connecting (i-1,j+1) with (i,j+1)
    } else {
        draw a line segment anywhere
    }
} else // Red drew a vertical line segment
    let i and j be such that Red's line segment connects (i,j) with (i+1,j)
    if (j>1) {
        draw a horizontal line segment connecting (i+1,j-1) with (i+1,j)
    } else {
        draw a line segment anywhere
    }
```
Closed Curve Game

By following this strategy Blue guarantees that Red does not have an “upper right corner” at any step. So, the invariant is:

There does not exist on the grid a pair of red line segments that form an upper right corner.

And in particular, Red has no closed curve!
Egyptian multiplication

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>/2</td>
<td>9</td>
</tr>
<tr>
<td>/2</td>
<td>4</td>
</tr>
<tr>
<td>/2</td>
<td>2</td>
</tr>
<tr>
<td>/2</td>
<td>1</td>
</tr>
</tbody>
</table>

throw away all rows with even A:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
</tr>
</tbody>
</table>

add B's

95

--> the product !!
Can we show it works? Loop invariants!!

def egyptian_multiply(left, right) :
 # precondition: left>0 AND right>0
 a=left; b=right; p=0 # p: the product computed stepwise
 # p + (a*b) == left * right loop invariant
 while (a!=0) :
 # a!=0 and p + (a*b) == left * right
 # loop condition and loop invariant
 if odd(a):
 p+=b
 a = a//2
 b = b * 2
 # p + (a*b) == left*right
 # a==0 and p+a*b == left*right --> p == left*right
 return p
Try it on 7 * 8

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>a</th>
<th>b</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td></td>
<td></td>
<td>+=b: 8</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td></td>
<td></td>
<td>+=b: 24</td>
</tr>
<tr>
<td>0</td>
<td>64</td>
<td></td>
<td></td>
<td>+=b: 56</td>
</tr>
</tbody>
</table>
Try it on 8*7

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>a</th>
<th>b</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>118</td>
<td></td>
<td>+=b: 56</td>
<td></td>
</tr>
</tbody>
</table>
Relation to binary representation 19*5

\[
\begin{array}{c}
00101 \\
10011 \\
\hline
101 \quad 5 \\
1010 \quad 10 \\
00000 \\
1010000 \quad 80 \\
\hline
1011111 \quad 95
\end{array}
\]
Incorporating loop invariants into your code

def egyptian_multiply(left, right) :
 # precondition: left>0 AND right>0
 a=left; b=right; p=0 #p: the product
 assert p + (a*b) == left * right
 while (a!=0) :
 assert a!=0 and p + (a*b) == left * right
 # loop condition and loop invariant
 if not (a/2 == a//2) :
 p+=b
 a = a//2
 b = b * 2
 assert p + (a*b) == left*right
 assert a==0 and p+a*b == left*right
 return p