CS 220: Discrete Structures and their Applications

Sets
zybooks sections 4.1-4.7
Set: An unordered collection of objects
The objects in a set are called its members or elements.

Example: \{2, 4, 8\} is the set containing the elements 2, 4, 8
This form of specifying a set is called roster notation

\{2, 4, 8\} is the same set as \{4, 2, 8\} (unordered)
Set: An unordered collection of objects
The objects in a set are called its members or elements.

Notation for set membership \in

$a \in A$ means "a is an element of the set A."

$A = \{1, 2, 3, 4, 5\}$

$4 \in A$
Examples

V={a, e, i, o, u} Set of vowels
B={False, True} Boolean values
O={1, 3, 5, ..., 99} Odd numbers between 1 and 99
Examples

The natural numbers \(N = \{0,1,2,3,\ldots\} \)

The integers \(Z = \{\ldots,-2,-1,0,1,2,\ldots\} \)

The positive integers \(Z^+ = \{1,2,\ldots\} \)

The rational numbers \(\mathbb{Q} \)

Cardinality of a set: number of distinct elements in the set. Denoted by \(|S|\).

A set is finite if its cardinality is finite (and infinite otherwise)

\[
A = \{ x \in N : x \leq 2000 \} \quad \text{what is } |A| \ ? \\
B = \{ x \in N : x \geq 2000 \} \quad \text{what is } |B| \ ?
\]
Building sets

Sometimes it’s hard to list all the elements of the set explicitly. E.g. the set of all odd numbers less than 100:

\[O = \{1, 3, 5, \ldots, 99\} \]

Ellipsis “…” is used instead of the omitted elements.

Instead we can characterize the set by the property its elements satisfy:

\[O = \{x : x \text{ is an odd positive integer less than 100}\} \]

This is called set builder notation.
Set builder notation

We can express the set \(O = \{1,3,5,\ldots,99\} \) using set builder notation:

\[
O = \{x \in \mathbb{Z}^+ : x \text{ is odd and } x < 100\}
\]

Definition of set builder notation:

\[
A = \{x \in S : P(x)\}
\]

or

\[
A = \{x \in S \mid P(x)\}
\]

\(S \) – a set

\(P(x) \) – a predicate

Example:

\[
D = \{ x \in \mathbb{R} : |x| < 1 \}
\]

Can also be written as:

\[
D = \{ x : x \in \mathbb{R} \text{ and } |x| < 1 \}
\]
A set A is said to be a subset of a set B if and only if every element of A is also an element of B.

Notation: $A \subseteq B$

Using logic:

$$A \subseteq B \iff \forall x \ (x \in A \Rightarrow x \in B)$$

Example: $\{1, 2, 4\} \subseteq \{1, 2, 3, 4, 5\}$
Questions

\{1, 2, 3\} \subseteq \{2, 3\} ?
\{1, 2, 3\} \subseteq \{1, 2, 3\} ?

What can we say about the relationship between the cardinalities of A and B if A \subseteq B?
Proper subsets

A is a proper subset of B if \(A \subseteq B \) and there is an element of B that is not an element of A.

Notation: \(A \subset B \)

Example:
\[
\{1, 2, 3\} \subset \{1, 2, 3, 4, 5\}
\]
Venn diagrams

Graphical representation of sets
U - the set of all objects

$A \subseteq B$
Example

integers between 1 and 9

1 2 3 5 7

2 even

4 6 8

odd

9 prime
Set equality

Two sets are equal if and only if they have the same elements.

We write $A = B$ to denote set equality.

Using logic:

$$A = B \iff \forall x \ (x \in A \iff x \in B)$$
The empty set has no elements.
Notation: \(\{\} \) or \(\emptyset \)
Is \(\emptyset \subseteq \{1, 2, 3\} \)? Yes! Since
\[\forall x \ x \in \emptyset \Rightarrow x \in \{1, 2, 3\} \]
In fact, this is true for any set.

The cardinality of \(\emptyset \) is zero: \(|\emptyset| = 0 \).
Questions

Is \{a\} \subseteq \{a\}?
Is \{a\} \in \{a\}?
Is \{a\} \in \{a,\{a\}\}?
sets of sets

As the previous example suggests, a set can have a set as an element!

Example:

\[A = \{ \{ 1, 2 \}, \emptyset, \{ 1, 2, 3 \}, \{ 1 \} \} \]

Note the following:

\[1 \notin A \]
\[\{ 1 \} \in A \]
\[\{ 1 \} \not\subseteq A \text{ since } 1 \notin A. \]

The empty set \(\emptyset \) is not the same as \(\{ \emptyset \} \)
The power set of a set S is the set of all subsets of S.

Notation: \(P(S) \)

Examples:

\[
P(\{0,1,2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}
\]
\[
P(\emptyset) = \{\emptyset\}
\]

Theorem: Let \(A \) be a set of cardinality \(n \), then \(|P(A)| = 2^n \).
The power set

Video game example:

- Given there are four objects a player could pick up, what are all the possible states the player could be in with respect to the set of objects $O = \{\text{coin, apple, sword, shield}\}$
- Answer: $P(O)$
Set Operations
set intersection

The intersection of sets A and B is the set containing those elements that are in both A and B.

Notation: $A \cap B$

$A \cap B = \{ x : x \in A \text{ and } x \in B \}$.

Example: $\{1,2,3\} \cap \{1,3,5\} = \{1, 3\}$

Two sets are called disjoint if their intersection is the empty set.
You can take the intersection of infinite sets:

\[A = \{ x \in \mathbb{Z} : x \text{ is a multiple of 2} \} \]

\[B = \{ x \in \mathbb{Z} : x \text{ is a multiple of 3} \} \]

\[A \cap B = \{ x \in \mathbb{Z} : x \text{ is a multiple of 6} \} \]
The union of sets A and B is the set that contains those elements that are either in A or in B, or in both.

- Notation: $A \cup B$
- $A \cup B = \{ x : x \in A \text{ or } x \in B \}.$

Example: $\{1,2,3\} \cup \{1,3,5\} = \{1,2,3,5\}$
operations on multiple sets

The use of parentheses is important!

E.g., what is $A \cap B \cup C$?
intersection/union of many sets

applying the intersection/union operations to large numbers of sets:

\[\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n = \{ x : x \in A_i \text{ for all } 1 \leq i \leq n \} \]

\[\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n = \{ x : x \in A_i \text{ for some } 1 \leq i \leq n \} \]
The **difference** of sets A and B is the set containing those elements that are in A but not in B.

$A - B = \{ x \mid x \in A \text{ and } x \notin B \}$.

Example: \{a, b, c, e, f\} - \{d, e, f, g\} = \{a, b, c\}
symmetric difference

The difference operation is not commutative since it is not necessarily the case that \(A - B = B - A \).

Check this in the diagram

The **symmetric difference** between two sets, \(A \) and \(B \), denoted \(A \oplus B \), is the set of elements that are a member of exactly one of \(A \) and \(B \), but not both.

Also defined as:

\[
A \oplus B = (A - B) \cup (B - A)
\]

Check it again
set complement

The universal set: the set of all elements in some domain (e.g. positive integers)

The complement of a set A is the set of all elements in the universal set U that are not elements of A.

\[\bar{A} \]

Notation:
An alternative definition: $U - A$
Example:

What is the complement of the natural numbers \((\mathbb{N})\) with respect to the integers \((\mathbb{Z})\)?
Summary of Set Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>$A \cap B$</td>
<td>{ $x : x \in A \text{ and } x \in B$ }</td>
</tr>
<tr>
<td>Union</td>
<td>$A \cup B$</td>
<td>{ $x : x \in A \text{ or } x \in B \text{ or both}$ }</td>
</tr>
<tr>
<td>Difference</td>
<td>$A - B$</td>
<td>{ $x : x \in A \text{ and } x \notin B$ }</td>
</tr>
<tr>
<td>Symmetric difference</td>
<td>$A \oplus B$</td>
<td>{ $x : x \in A - B \text{ or } x \in B - A$ }</td>
</tr>
<tr>
<td>Complement</td>
<td>\bar{A}</td>
<td>{ $x : x \notin A$ }</td>
</tr>
</tbody>
</table>
expressing sets operations using logic

\[x \in A \cap B \leftrightarrow (x \in A) \land (x \in B) \]
\[x \in A \cup B \leftrightarrow (x \in A) \lor (x \in B) \]
\[x \in \bar{A} \leftrightarrow \neg (x \in A) \]

The sets \(U \) and \(\emptyset \) correspond to the constants true (T) and false (F):

\[x \in \emptyset \leftrightarrow F \]
\[x \in U \leftrightarrow T \]
DeMorgan's laws for sets

We can use the laws of propositional logic to derive corresponding set identities:

\[x \in \overline{A \cap B} \iff \neg (x \in A \cap B) \]
\[\iff \neg (x \in A \land x \in B) \]
\[\iff \neg (x \in A) \lor \neg (x \in B) \]
\[\iff x \in \overline{A} \lor x \in \overline{B} \]
\[\iff x \in (\overline{A} \cup \overline{B}) \]

Result:

\[\overline{A \cap B} = \overline{A} \cup \overline{B} \]
Set Identities

<table>
<thead>
<tr>
<th>Name</th>
<th>Identities</th>
<th>Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idempotent laws</td>
<td>$A \cup A = A$</td>
<td>$A \cap A = A$</td>
</tr>
<tr>
<td>Associative laws</td>
<td>$(A \cup B) \cup C = A \cup (B \cup C)$</td>
<td>$(A \cap B) \cap C = A \cap (B \cap C)$</td>
</tr>
<tr>
<td>Commutative laws</td>
<td>$A \cup B = B \cup A$</td>
<td>$A \cap B = B \cap A$</td>
</tr>
<tr>
<td>Distributive laws</td>
<td>$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$</td>
<td>$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$</td>
</tr>
<tr>
<td>Identity laws</td>
<td>$A \cup \emptyset = A$</td>
<td>$A \cap U = A$</td>
</tr>
<tr>
<td>Domination laws</td>
<td>$A \cap \emptyset = \emptyset$</td>
<td>$A \cup U = U$</td>
</tr>
<tr>
<td>Double Complement law</td>
<td>$\overline{\overline{A}} = A$</td>
<td></td>
</tr>
<tr>
<td>Complement laws</td>
<td>$A \cap \overline{A} = \emptyset$</td>
<td>$A \cup \overline{A} = U$</td>
</tr>
<tr>
<td></td>
<td>$\overline{U} = \emptyset$</td>
<td>$\overline{\emptyset} = U$</td>
</tr>
<tr>
<td>De Morgan's laws</td>
<td>$\overline{A \cup B} = \overline{A} \cap \overline{B}$</td>
<td>$\overline{A \cap B} = \overline{A} \cup \overline{B}$</td>
</tr>
<tr>
<td>Absorption laws</td>
<td>$A \cup (A \cap B) = A$</td>
<td>$A \cap (A \cup B) = A$</td>
</tr>
</tbody>
</table>
Every set identity has a corresponding rule of propositional logic

<table>
<thead>
<tr>
<th>Name</th>
<th>Identities</th>
<th>Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idempotent laws</td>
<td>(A \cup A = A)</td>
<td>(A \cap A = A)</td>
</tr>
<tr>
<td>Associative laws</td>
<td>((A \cup B) \cup C = A \cup (B \cup C))</td>
<td>((A \cap B) \cap C = A \cap (B \cap C))</td>
</tr>
<tr>
<td>Commutative laws</td>
<td>(A \cup B = B \cup A)</td>
<td>(A \cap B = B \cap A)</td>
</tr>
<tr>
<td>Distributive laws</td>
<td>(A \cup (B \cap C) = (A \cup B) \cap (A \cup C))</td>
<td>(A \cap (B \cup C) = (A \cap B) \cup (A \cap C))</td>
</tr>
<tr>
<td>Identity laws</td>
<td>(A \cup \varnothing = A)</td>
<td>(A \cap U = A)</td>
</tr>
<tr>
<td>Domination laws</td>
<td>(A \cap \varnothing = \varnothing)</td>
<td>(A \cup U = U)</td>
</tr>
<tr>
<td>Double Complement law</td>
<td>(\overline{\overline{A}} = A)</td>
<td></td>
</tr>
<tr>
<td>Complement laws</td>
<td>(A \cap \overline{A} = \varnothing)</td>
<td>(A \cup \overline{A} = U)</td>
</tr>
<tr>
<td></td>
<td>(U = \varnothing)</td>
<td>(\overline{\varnothing} = U)</td>
</tr>
<tr>
<td>De Morgan's laws</td>
<td>(\overline{A \cup B} = \overline{A} \cap \overline{B})</td>
<td></td>
</tr>
<tr>
<td>Absorption laws</td>
<td>(A \cup (A \cap B) = A)</td>
<td></td>
</tr>
</tbody>
</table>

Idempotent laws	\(p \lor p = p \)	\(p \land p = p \)
Associative laws	\((p \lor q) \lor r = p \lor (q \lor r)\)	\((p \land q) \land r = p \land (q \land r)\)
Commutative laws	\(p \lor q = q \lor p \)	\(p \land q = q \land p \)
Distributive laws	\(p \lor (q \land r) = (p \lor q) \land (p \lor r) \)	\(p \land (q \lor r) = (p \land q) \lor (p \land r) \)
Identity laws	\(p \lor F = p \)	\(p \land T = p \)
Domination laws	\(p \land F = F \)	\(p \lor T = T \)
Double negation law	\(\neg \neg p = p \)	
Complement laws	\(p \land \neg p = F \)	\(p \lor \neg p = T \)
	\(\neg T = F \)	\(\neg F = T \)
De Morgan's laws	\(\neg (p \lor q) = \neg p \land \neg q \)	\(\neg (p \land q) = \neg p \lor \neg q \)
Absorption laws	\(p \lor (p \land q) = p \)	\(p \land (p \lor q) = p \)
If order matters:

An ordered n-tuple is a sequence of n objects

$(a_1, a_2, ..., a_n)$

First component is a_1

...

n-th component is a_n

An ordered pair: 2-tuple (a, b)
An ordered triple: 3-tuple (a, b, c)

Sets do not have the same element more than once:

$\{1, 1, 2\} = \{1, 2\}$

Tuples can have the same element more than once:

$(1, 1, 1)$ is a valid 3-tuple
Two tuples are equal iff corresponding pairs of elements are equal:

\[(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n) \text{ iff } a_1 = b_1, a_2 = b_2, \ldots, a_n = b_n\]

\[(2, 1) \neq (1, 2), \text{ but } \{2, 1\} = \{1, 2\}\]

Think of tuples as book chapters and sections

\[(1, 1): \quad \text{Chapter 1, section 1}\]
\[(1, 2, 4): \quad \text{Chapter 1, section 2, sub-section 4}\]
The **cartesian product** of sets A and B is denoted by $A \times B$ and is defined as:

$$\{ (a, b) : a \in A \text{ and } b \in B \}$$

Example: $A = \{1, 2\}$, $B = \{a, b, c\}$

$$A \times B = \{ (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) \}$$

Is $A \times B$ the same as $B \times A$?
Cartesian product of the sets
A = \{x, y, z\} and
B = \{1, 2, 3\}

![Cartesian product image from Wikipedia](https://en.wikipedia.org/wiki/Cartesian_product)
The cartesian product $\mathbb{R} \times \mathbb{R}$ (\(\mathbb{R}\) being the real numbers) gives every point in a 2D plane a pair of \(x, y\) coordinates:
Fact: $|A \times B| = |A| \times |B|$

Example: $A = \{1, 2\}$, $B = \{a, b, c\}$

$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
The cartesian product of sets A_1, \ldots, A_n is the set of n-tuples (a_1, a_2, \ldots, a_n), where $a_i \in A_i$ for $i = 1, 2, \ldots, n$.

Denoted by $A_1 \times A_2 \times \ldots \times A_n$

Example: $A = \{0, 1\}$, $B = \{2, 3\}$, $C = \{4, 5, 6\}$

What is $A \times B \times C$?

What is $|A \times B \times C|$?
You can take the cartesian product of a set with itself.

Given a set A we can look at $A \times A$ (denoted A^2), and more generally

$A \times A \times \ldots \times A$ denoted as A^k.

k times

Example: if $A = \{0, 1\}$, then A^k is the set of all ordered k-tuples whose entries are bits (0 or 1).

$\{0, 1\}^3 = \{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) \}$

Example: \mathbb{R}^2 is the set of all points in the plane.
If A is a set of symbols, then members of A^k can be written without commas/parentheses.

For example:
If $A = \{0, 1\}$ then we can express A^2 as $\{00, 01, 10, 11\}$.
Two sets, A and B, are said to be disjoint if their intersection is empty ($A \cap B = \emptyset$).

A collection of sets, $A_1, A_2, ..., A_n$, is pairwise disjoint if every pair of sets is disjoint i.e., $A_i \cap A_j = \emptyset$ when $i \neq j$.

A partition of a non-empty set A is a collection of non-empty subsets of A such that each element of A is in exactly one of the subsets.

$A_1, A_2, ..., A_n$ is a partition for a non-empty set A if:

- $A_i \subseteq A$ for all i.
- $A_i \neq \emptyset$.
- $A_1, A_2, ..., A_n$ are pairwise disjoint.
- $A = A_1 \cup A_2 \cup ... \cup A_n$.
practice question:
Suppose that every student is assigned a unique 8-digit ID number.

\[A_i : \text{the set students whose ID number begins with the digit } i. \]

Assume that for each digit, \(i \), there is at least one student whose ID starts with \(i \).

Do the sets \(A_0, \ldots, A_9 \) form a partition of the set of students?