CS 220: Discrete Structures and their Applications

Recursive algorithms and induction
6.8 in zybooks
Several of the inductive proofs we looked at lead to recursive algorithms:

- The triomino tiling problem
- Making postage using 3 and 5 cent stamps
- Generating all subsets of a set recursively

Induction is useful for designing and proving the correctness of recursive algorithms.
String reversal

Consider the following recursive algorithm for reversing a string:

`reverse_string(s)`

 if `s` is the empty string:
 return `s`
 let `c` be the first character in `s`
 remove `c` from `s`
 `s'` = `reverse_string(s)`
 return the string `s'` with `c` added to the end
String reversal

Proof of correctness of reverse_string

reverse_string(s)

if s is the empty string:
 return s

let c be the first character in s
remove c from s
s' = reverse_string(s)
return the string s' with c added to the end

By induction on the length of the string

Base case: If s has length 0 the algorithm returns s which is its own reverse.
String reversal

Proof of correctness of reverse_string

reverse_string(s)
 if s is the empty string:
 return s
 let c be the first character in s
 remove c from s
 s' = reverse_string(s)
 return the string s' with c added to the end

Inductive step: assume that reverse_string works correctly for strings of length k and show that for k+1

Let s be a string of length k + 1. s = c_1c_2...c_kc_{k+1}.

reverse_string makes a recursive call whose input is c_2...c_kc_{k+1}.

By the induction hypothesis it returns the inverse: c_{k+1}c_k...c_2

It then adds c_1 at the end, returning c_{k+1}c_k...c_2c_1, which is the reverse of s
def pow(x, n):
 #precondition: x and n are positive integers
 if (n == 0):
 return 1
 else :
 return x * pow(x, n-1)
def pow(x, n):
 # precondition: x and n are positive integers
 if (n == 0):
 return 1
 else:
 return x * pow(x, n-1)

Claim: the algorithm correctly computes x^n.
Proof: By induction on n
Basis step: $n = 0$: it correctly returns 1
Inductive step: assume that for n the algorithm correctly returns x^n.
Then for $n+1$ it returns $x \times x^n = x^{n+1}$.
In PA2 you are implementing an iterative exponentiation algorithm, based on the following recursive definition:

```python
def pow(x, n):
    #precondition: x and n are positive integers
    if n == 0:
        return 1
    else if not (n/2 == n//2):
        return x * pow(x**2, n//2)
    else:
        return pow(x**2, n//2)
```

Does linear induction work for this algorithm? Why (not) ?

What do we need?
def powerset(s):
 if len(s) == 0:
 return {frozenset()}
 else:
 element = s.pop()
 pwrset = powerset(s)
 return pwrset.union({x.union({element})
 for x in pwrset})