Using recursion to define objects

We can use recursion to define functions:

The factorial function can be defined as:

\[n! = \begin{cases}
1 & \text{for } n = 0 \\
n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]

This gives us a way of computing the function for any value of \(n \).

Recursive sets

Some sets are most naturally specified with recursive definitions.

A recursive definition of a set shows how to construct elements in the set by putting together simpler elements.

Example: balanced parentheses

\((()())\) is balanced

\(())\) and \((()())\) are not

Recursive objects and structural induction

6.9 - 6.10 in zybooks

factorial

This is all we need to put together the function:

```python
def factorial(n):
    # precondition:  n is a positive integer
    if (n == 0):
        return 1
    else:
        return n * factorial(n-1);
```
Some sets are most naturally specified with recursive definitions.

A recursive definition of a set shows how to construct elements in the set by putting together simpler elements.

Example: balanced parentheses

Basis: The sequence () is properly nested.

Recursive rules: If u and v are properly-nested sequences of parentheses then:
1. (u) is properly nested.
2. uv is properly nested.

Is there a unique way to construct ()(())?
binary strings

Let \(B = \{0, 1\} \)

\(B^k \): the set of strings of length \(k \) - \(\{0, 1\}^k \)

The empty string: \(\lambda \)

\(B^0 = \{\lambda\} \)

The set of all strings:

\[
B^* = B^0 \cup B^1 \cup B^2 \ldots
\]

perfect binary trees

Basis: A single vertex with no edges is a perfect binary tree.

Recursive rule: If \(T \) is a perfect binary tree, a new perfect binary tree \(T' \) can be constructed by taking two copies of \(T \), adding a new vertex \(v \) and adding edges between \(v \) and the roots of each copy of \(T \). The new vertex \(v \) is the root of \(T' \).

binary strings

The set of all strings:

\[
B^* = B^0 \cup B^1 \cup B^2 \ldots
\]

This set can be defined recursively:

Base case: \(\lambda \in B^* \)

Recursive rule: if \(x \in B^* \) then

- \(x0 \in B^* \)
- \(x1 \in B^* \)
We can use induction to prove properties of recursively defined objects.

This is called structural induction.

As an example, we’ll prove the following:

Theorem: Properly nested strings of left and right parentheses are balanced.

A string of parentheses x is called **balanced** if $\text{left}[x] = \text{right}[x]$, where $\text{left}[x]/\text{right}[x]$ is the number of left/right parentheses in x.

Proof.

By induction.

Base case: ε is properly nested. $\text{left}[\varepsilon] = \text{right}[\varepsilon] = 1$.

Inductive step: If x is a string of properly nested parentheses then x was constructed by applying a sequence of recursive rules starting with the string ε. We consider two cases, depending on the last recursive rule that was applied to construct x.

Case 1: Rule 1 is the last rule applied to construct x. Then $x = (u)$, where u is properly nested. We assume that $\text{left}[u] = \text{right}[u]$ and prove that $\text{left}[x] = \text{right}[x]$:

- $\text{left}[x] = \text{left}(u)$
- $\text{left}(u) = 1 + \text{left}[u]$ (because $x = (u)$)
- $\text{left}[u] = \text{left}[u]$ (one more ”(“ than u)
- $\text{left}[x] = \text{right}[u]$ (one more “)” than u)
- $\text{left}[x] = \text{right}[x]$

Case 2: Rule 2 is the last rule applied to construct x. Then $x = uv$, where u and v are properly nested. We assume that $\text{left}[u] = \text{right}[u]$ and $\text{left}[v] = \text{right}[v]$ and then prove that $\text{left}[x] = \text{right}[x]$:

- $\text{left}[x] = \text{left}[u] + \text{left}[v]$
- $\text{left}[x] = \text{left}[u] + \text{left}[v]$ (because $x = uv$)
- $\text{left}[u] = \text{right}[u]$ (one more “)” than u)
- $\text{left}[v] = \text{right}[v]$ (one more “)” than v)
- $\text{left}[x] = \text{right}[x]$

because $x = uv$
Theorem: Let \(T \) be a perfect binary tree. Then the number of vertices in \(T \) is \(2^k - 1 \) for some positive integer \(k \).

Proof.

By induction.

Base case: the tree with one vertex has \(2^1 - 1 = 1 \) leaves.

Inductive step: Let \(T' \) be a perfect binary tree. The last recursive rule that is applied to create \(T' \) takes a perfect binary tree \(T \), duplicates \(T \) and adds a new vertex \(v \) with edges to each of the roots of the two copies of \(T \). We assume that \(v(T) = 2^k - 1 \), for some positive integer \(k \) and prove that \(v(T') = 2^j - 1 \) for some positive integer \(j \).

The number of vertices in \(T' \) is twice the number of vertices in \(T \) (because of the two copies of \(T \)) plus 1 (because of the vertex \(v \) that is added), so \(v(T') = 2v(T) + 1 \). By the inductive hypothesis, \(v(T) = 2^k - 1 \) for some positive integer \(k \). Therefore

\[
v(T') = 2v(T) + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 1
\]