CS 220: Discrete Structures and their Applications

Mathematical Induction 6.4 - 6.6 in zybooks

Why induction?

Prove algorithm correctness (CS320 is full of it)

The inductive proof will sometimes point out an algorithmic solution to a problem

Strongly connected to recursion

Show that any postage of $\geq 8^{\ddagger}$ can be obtained using 3^{\ddagger} and 5^{\ddagger} stamps.

First check for a few values:

8¢	=	3¢ + 5¢
9¢	=	3¢ + 3¢ + 3¢
10¢	=	5¢ + 5¢
11¢	=	5¢ + 3¢ + 3¢
12¢	=	3¢ + 3¢ + 3¢ + 3¢

How to generalize this?

Let n be a positive integer. Show that every $2^n \times 2^n$ chessboard with one square removed can be tiled using triominoes, each covering three squares at a time.

Prove that for every positive value of n, $1 + 2 + \dots + n = n(n + 1)/2$.

Many mathematical statements have the form: $\forall n \in N, P(n) \quad P(n)$: Logical predicate

Example: For every positive value of n, $1 + 2 + \dots + n = n(n + 1)/2$.

Predicate - propositional function that depends on a variable, and has a truth value once the variable is assigned a value.

Mathematical induction is a proof technique for proving such statements

Proving P(3)

Suppose we kn	ow:
1. P(1) and	2. $P(n) \rightarrow P(n+1) \forall n \ge 1$.
Prove: P(3)	
Proof:	
1. P(1).	[premise]
2. $P(1) \rightarrow P(2)$.	[specialization of premise]
3. P(2).	[step 1, 2, & modus ponens]
4. $P(2) \rightarrow P(3)$.	[specialization of premise]
5. P(3).	[step 3, 4, & modus ponens]

We can construct a proof for every finite value of n Modus ponens: if p and $p \rightarrow q$ then q

Theorem: For every positive integer n,

$$\sum_{j=1}^n j = \frac{n(n+1)}{2}$$

Proof.

By induction on n.

Base case: n = 1.

When n = 1, the left side of the equation is $\sum_{j=1}^{1} j = 1$.

When n = 1, the right side of the equation is 1(1 + 1)/2 = 1.

Therefore, $\sum_{j=1}^{1} j = \frac{1(1+1)}{2}$.

Inductive step: Suppose that for positive integer k, $\sum_{j=1}^{k} j = \frac{k(k+1)}{2}$, then we will show that

$$\sum_{j=1}^{k+1} j = \frac{(k+1)(k+2)}{2}$$

Starting with the left side of the equation to be proven:

$$\sum_{j=1}^{k+1} j = \sum_{j=1}^{k} j + (k+1)$$
 by separating out the last term

$$= \frac{k(k+1)}{2} + (k+1)$$
 by the inductive hypothesis

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+2)(k+1)}{2}$$
 by algebra
Therefore, $\sum_{j=1}^{k+1} j = \frac{(k+1)(k+2)}{2}$.

A Geometrical interpretation

Put these blocks, which represent numbers, together to form sums:

A Geometrical interpretation

Area is $n^2/2 + n/2 = n(n + 1)/2$

The principle of mathematical induction

(basis step)

Let P(n) be a statement that, for each natural number n, is either true or false.

To prove that $\forall n \in N, P(n)$, it suffices to prove:

- P(1) is true.
- $\forall n \in \mathbb{N}, P(n) \rightarrow P(n+1).$ (inductive step)

This is not magic.

It is a recipe for constructing a proof for an arbitrary $n \in N$.

the domino principle

If

the $1^{\mbox{\scriptsize st}}$ domino falls over

and

the *n*th domino falls over implies that domino (n + 1) falls over

then

domino *n* falls over for all $n \in N$.

image from http://en.wikipedia.org/wiki/File:Dominoeffect.png

proof by induction

3 steps:

- Prove P(1). [the basis step]
- Assume P(k) [the induction hypothesis]
- Using P(k) prove P(k + 1)

[the inductive step]

Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.
Basis step:
8¢ = 3¢ + 5¢

Let P(n) be the statement "n cents postage can be obtained using 3¢ and 5¢ stamps".

Want to show that "P(k) is true" *implies* "P(k+1) is true" for all k ≥ 8. 2 cases:

> P(k) is true and the k cents contain at least one 5¢.
> P(k) is true and

> > the k cents do not contain any 5¢.

Case 1: k cents contain at least one 5¢ stamp.

Case 2: k cents do not contain any 5¢ stamp. Then there are at least three 3¢ stamp.

Arithmetic sequences

Sum of an arithmetic sequence: For any integer $n \ge 1$:

$$\sum_{j=0}^{n-1} (a+jd) = an + \frac{d(n-1)n}{2}$$

Proof: By induction on n

Base case: n=1

Induction step: $\sum_{k=1}^{k-1} (a+jd) = ak + \frac{d(k-1)k}{2}$ Assume: Need to prove: $\sum_{i=0}^{k} (a+jd) = a(k+1) + \frac{dk(k+1)}{2}$

Prove that $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ Prove that for $n \ge 4 2^n < n!$ Prove that n^3 -n is divisible by 3 for every positive n. Prove that $1 + 3 + 5 + ... + (2n+1) = (n+1)^2$ Prove that a set with n elements has 2^n subsets Prove that $1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$ for n>0 Hint: $2n^2+7n+6 = (n+2)(2n+3)$

each time ask yourself

1. BASE

What is the base case? Can I prove the base case?

2. STEP

What is the hypothesis?

Obligation: What do I need to prove the inductive step How do I complete the inductive step?

Prove that $P(n): 1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$ for n>0

Base: n=1 1² = 1.2.3/6 Hypothesis: P(k): 1² + 2² + 3² + ... + k² = k(k+1)(2k+1)/6 Obligation P(k) \rightarrow P(k+1) : 1² + 2² + 3² + ... + (k+1)² = (k+1)(k+2)(2k+3)/6 Proof: 1² + 2² + 3² + ... + (k+1)² = 1² + 2² + 3² + ... + k² + (k+1)² = hypothesis

 $k(k+1)(2k+1)/6 + (k+1)^2 = (k+1)(k(2k+1)+6(k+1))/6 =$

 $(k+1)(2k^2+7k+6)/6 =$ Hint: $2n^2+7n+6 = (n+2)(2n+3)$

(k+1)(k+2)(2k+3)/6

All horses have the same color Base case: If there is only one horse, there is only one color.

Induction step: Assume as induction hypothesis that within any set of n horses, there is only one color. Now look at any set of n + 1 horses. Number them: 1, 2, 3, ..., n, n + 1. Consider the sets {1, 2, 3, ..., n} and {2, 3, 4, ..., n + 1}. Each is a set of only n horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all n+1 horses.

This is clearly wrong, but can you find the flaw?

NOT all horses have the same color

The step from k = 1 {1} to k = 2 {1,2}

Fails: there is no intersection: $\{1\} \cap \{2\}$ in a set of two horses, as was incorrectly used in the "proof".

More induction examples

Let n be a positive integer. Show that every $2^n \times 2^n$ chessboard with one square removed can be tiled using L-shaped triominoes, each covering three squares at a time.

First, show that 3 | 2ⁿ x 2ⁿ - 1 (i.e. 3 divides 2ⁿ x 2ⁿ - 1)

Tiling with triominoes

Divide the board into four sub-boards:

Base case?

A bound on Fibonacci numbers

The Fibonacci sequence:

 $f_0 = 0, f_1 = 1$ $f_n = f_{n-1} + f_{n-2} \text{ for } n \ge 2$

Theorem: $f_n \le 2^n$ for $n \ge 0$

Strong induction

Induction:

- P(1) is true.
- $\forall n \in N, P(n) \rightarrow P(n + 1).$
- Implies $\forall n \in N, P(n)$

Strong induction:

- P(1) is true.
- $\forall n \in N, (P(1) \land P(2) \land ... \land P(n)) \rightarrow P(n + 1).$
- Implies $\forall n \in N, P(n)$

Prove that all natural numbers ≥ 2 can be represented as a product of primes.

Basis: n=2: 2 is a prime.

Inductive step: show that n+1 can be represented as a product of primes.

- If n+1 is a prime: It can be represented as a product of 1 prime, itself.
- If n+1 is composite: Then, n + 1 = ab, for some a,b < n + 1.
 - Therefore, a = $p_1p_2 \dots p_k$ & b = $q_1q_2 \dots q_l$, where the p_i s & q_i s are primes.
 - Represent $n+1 = p_1 p_2 \dots p_k q_1 q_2 \dots q_{l_k}$

Breaking chocolate

Theorem: Breaking up a chocolate bar with n "squares" into individual squares takes n-1 breaks. (Break = dividing (sub) bar in 2 along a "break line")

A full binary tree (sometimes proper binary tree or 2-tree) is a tree in which every node other than the leaves has two children. Prove:

A full binary tree with n leaves has n-1 internal nodes

What is the relation with the chocolate bar?

Induction and the well ordering principle

The well-ordering principle: any non-empty subset of the non-negative integers has a smallest element.

Surprising fact: Well-ordering implies the principle of mathematical induction

Smallest element: base Next element: step