CS 220: Discrete Structures and their Applications

counting by complement, inclusion exclusion, the pigeonhole principle

$$
\text { zybooks } 7.8-7.10
$$

example problem

How many 6-bit strings have at least one 0?

You can count them directly:

Number of 6-bit strings with at least one $0=$
Number of 6-bit strings with one 0

+ Number of 6-bit strings with two 0s
+ Number of 6-bit strings with three Os
+ Number of 6-bit strings with four Os
+ Number of 6-bit strings with five Os
+ Number of 6-bit strings with six Os

counting by complement

How many 6-bit strings have at least one 0?

Or you can use the complement rule:

Number of 6-bit strings with at one $0=$
Number of 6-bit strings

- Number of 6-bit strings with no $0 s=2^{6}-1$

The complement rule: Let P be a subset of a set S, then:

$$
|P|=|S|-|\bar{P}|
$$

example

In how many ways can a photographer at a wedding arrange six people in a row, including the bride and groom, if

- the bride must be next to the groom?
- The bride is not next to the groom?
- The bride is positioned somewhere to the left of the groom?

The inclusion exclusion principle

A more general statement than the sum rule:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Example

How many numbers between 1 and 30 are divisible by 2 or 3 ?

The inclusion exclusion principle

How many bit strings of length eight start with a 1 or end with 00?

```
1------ how many?
------00 how many?
```

if I add these, how many have I counted twice?

inclusion exclusion with three sets

To compute the cardinality of the union of three sets:

Let A, B and C be three finite sets, then

$$
\begin{aligned}
\mid A \cup B & \cup C|=|A|+|B|+|C| \\
& -|A \cap B|-|B \cap C|-|A \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

example

How many integers from 1 to 30 are divisible by 2, 3 or 5 ?
$A_{2}=$ set of integers between 1 and 30 divisible by 2
$A_{3}=$ set of integers between 1 and 30 divisible by 3
$A_{5}=$ set of integers between 1 and 30 divisible by 5
$\left|A_{2} \cup A_{3} \cup A_{5}\right|=\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|-\left|A_{2} \cap A_{3}\right|-\left|A_{5} \cap A_{3}\right|-\left|A_{5} \cap A_{2}\right|+\left|A_{5} \cap A_{2} \cap A_{3}\right|$
$=15+10+6-5-2-3+1$
$=22$
1
1

the inclusion exclusion principle

The general statement of the incusion-exclusion principle:
Let $A_{1}, A_{2}, \ldots, A_{n}$ be a set of n finite sets.

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{j=1}^{n}\left|A_{j}\right|
$$

$$
-\sum_{1 \leq j<k \leq n}\left|A_{j} \cap A_{k}\right|
$$

$$
+\sum_{1 \leq j<k<l \leq n}\left|A_{j} \cap A_{k} \cap A_{l}\right|
$$

$$
+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
$$

Some advice about counting

Apply the multiplication rule if

- The elements to be counted can be obtained through a multistep selection process.
- Each step is performed in a fixed number of ways regardless of how preceding steps were performed.
Apply the sum rule if
- The set of elements to be counted can be broken up into disjoint subsets
Apply the inclusion/exclusion rule if
- It is simple to over-count and then to subtract duplicates

The pigeonhole principle

If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more objects.

Image: http://en.wikipedia.org/wiki/File:TooManyPigeons.jpg

Examples

In a group of 367 people, there must be at least two with the same birthday

A drawer contains a dozen brown socks and a dozen black socks, all unmatched. A guy takes socks out at random in the dark.

- How many socks must he take out to be sure that he has at least two socks of the same color?
A) 13 B) 3 C) 12

Examples

In a group of 367 people, there must be at least two with the same birthday

A drawer contains a dozen brown socks and a dozen black socks, all unmatched. A guy takes socks out at random in the dark.

- How many socks must he take out to be sure that he has at least two socks of the same color?
- How many socks must he take out to be sure that he has at least two black socks?

Examples

Show that if five different digits between 1 and 8 are selected, there must be at least one pair of these with a sum equal to 9 .
ask yourself: what are the pigeon holes?
what are the pigeons?

