CS 220: Discrete Structures and their Applications

binary relations
zybooks 9.1-9.2

binary relations

A - set of students
B - set of courses
R - pairs (a, b) such that student a is enrolled in course b
$R=\{(c h r i s, c s 220),($ mike,cs520 $), . .$.

A - set of cities
B - set of US states
$R-(a, b)$ such that city a is in state b
$R=\{($ Denver, CO), (Laramie, WY),...\}

binary relations

Definition: A binary relation between two sets A and B is a subset R of $A \times B$.
Recall that $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$
For $a \in A$ and $b \in B$, the fact that $(a, b) \in R$ is denoted by aRb.

Example:
For $x \in R$ and $y \in Z$ define $x C y$ if $|x-y| \leq 1$

binary relations

a graphical representation of a relation

People $=\{$ Sue, Harry, Sam \}
Files $=\{$ FileA, FileB, FileC, FileD \}

Relation A: pAf if person p has access to file f

binary relations

the same binary relation can be represented as a matrix:

$$
\begin{aligned}
& \text { People }=\{\text { Sue, Harry, Sam }\} \\
& \text { Files }=\{\text { File A, File B, File C, File D }\}
\end{aligned}
$$

Relation A: pAf if person p has access to file f
File A File B File C File D
Sue
Harry
Sam \(\left[\begin{array}{llll}0 \& 1 \& 1 \& 1

1 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0\end{array}\right] \quad\)| $A=\{($ Sue, File B) (Sue, File C) (Sue, File D) |
| :---: |
| (Harry, File A) (Harry, File D) |

A 2-d array of numbers with $|A|$ rows and $|B|$ columns. Each row corresponds to an element of A and each column corresponds to an element of B. For $a \in A$ and $b \in B$, there is $a 1$ in row a, column b, if $a R b$ and 0 otherwise.

counting binary relations

A binary relation from A to B is a subset of $A \times B$

Given sets A and B with sizes n and m, the number of elements in $A \times B$ is $n m$, and the number of binary relations from A to B is $2^{n m}$

WHY?

functions as relations

A function from A to B assigns an element of B to each element of A.

Difference between relations and functions?

binary relations on a set

A binary relation on a set A is a subset of $A \times A$. The set A is called the domain of the binary relation.

Graphical representation of a binary relation on a set:

$$
\begin{aligned}
& A=\{a, b, c, d, e\} \\
& R \subseteq A \times A \\
& R=\{(a, b)(b, c)(e, c)(c, e)(d, a)(d, d)\}
\end{aligned}
$$

binary relations on a set

Let $A=\{1,2,3,4\}$. Define a relation R on A :

$$
R=\{(1,2),(1,3),(2,2),(2,3),(3,2),(4,3)\}
$$

Can you find the mistakes in the following graphs and matrix representations of this relation?

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

binary relations on a set

Example: relations on the set of integers

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b+1\}
\end{aligned}
$$

application of relations: knowledge graphs

Relations are a way of encoding knowledge.
A knowledge graph is a set of entities (Barak Obama, Hawaii, etc.), relations between those entities (<born_in>).
The relations are used to represent facts e.g. born_in(Barak Obama, Hawaii).

https://www.ambiverse.com/knowledge-graphs-encyclopaedias-for-machines/

properties of binary relations

Let R be a relation on a set A
The relation R is reflexive if for every $x \in A, x R x$.
Example: the less-or-equal to relation on the positive integers

The relation R is anti-reflexive if for every $x \in A$, it is not true that $x R x$.

$A=\{a, b, c, d, e\}$

$A=\{a, b, c, d, e\}$

properties of binary relations

Let R be a relation on a set A.
The relation R is transitive if for every $x, y, z \in A, x R y$ and $y R z$ imply that x Rz.

Example: the ancestor relation

$$
A=\{a, b, c, d, e\}
$$

properties of binary relations

Let R be a relation on a set A.
The relation R is symmetric if for every $x, y \in A, x R y$ implies that $y R x$.
Example:
$R=\{(a, b): a, b$ are actors that have played in the same movie $\}$

The relation R is anti-symmetric if for every $x, y \in A, x R y$ and $y R x$ imply that $x=y$.

$A=\{a, b, c, d, e\}$
$A=\{a, b, c, d, e\}$

