
CS 220: Discrete Structures and their
Applications

Trees
Chapter 11 in zybooks

trees

A tree is an undirected graph that is connected and
has no cycles.

rooted trees

Rooted trees. Given a tree T, choose a root node r
and orient each edge away (down) from r.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

rooted trees

Rooted trees model hierarchical structure.
The file system as a rooted tree:

phylogenetic trees

Phylogeny. Describe the evolutionary history of
species.

http://www.whozoo.org/mammals/Carnivores/Cat_Phylogeny.htm

game trees

games can be represented by trees:

The root is the initial configuration.
The children of a state c are all the configurations that can be
reached from c by a single move.
A configuration is a leaf in the tree if the game is over.

initial configuration

player X

player O

rooted trees

Rooted trees. Given a tree T, choose a root node r
and orient each edge away from r.

The level of a node is its distance from the root
The height of a tree is the highest level of any
vertex.

level = 1

root

level = 2

rooted trees

Every vertex in a rooted tree has a unique parent, except for
the root which does not have a parent.
Every vertex along the path from v to the root (except for the
vertex v itself) is an ancestor of v.
A leaf is a vertex which has no children.

u

parent of vchild of u

ancestor of v

leafdescendant of u v

rooted trees

Two vertices are siblings if they have the same parent.
A subtree rooted at vertex v is the tree consisting of v and all
v's descendants.

subtree

siblings

v

properties of trees

A leaf of an unrooted tree is a vertex of degree 1.
If a tree has only one vertex, then that vertex is a leaf.
A vertex is an internal vertex if the vertex has degree at least
two.

leaf

internal vertex

properties of trees

A leaf of an unrooted tree is a vertex of degree 1.

Theorem: Any unrooted tree with at least two vertices has at
least two leaves.

Proof.
Consider the longest path in the tree.
Its end vertices are both leaves.

But: what about a rooted tree?

properties of trees

Theorem: There is a unique path between every pair of vertices
in a tree.
Proof.
There is a path between every pair of vertices because a tree is
connected. It remains to be seen that the path is unique.

Let's assume that the path is not unique:

properties of trees

Theorem: Let T be a tree with n vertices and m edges, then m = n - 1.

Proof. By induction on the number of vertices.
Base case: is where n = 1. If T has one vertex, then it is has no edges,
i.e. m = 0 = n - 1.

properties of trees

Theorem: Let T be a tree with n vertices and m edges, then m = n – 1.
Inductive step: assume the theorem holds for trees with n-1 vertices
and prove that it holds for trees with n vertices.
Consider an arbitrary tree T with n vertices. Let v be one of the
leaves. Remove v from T along with the edge e incident to v. The
resulting graph (call it T') is also a tree and has n-1 vertices.

properties of trees

Theorem: Let T be a tree with n vertices and m edges, then m = n – 1.

By the induction hypothesis, The number of edges in T' is (n - 1) - 1 =
n - 2. T has exactly one more edge than T', because only edge e was
removed from T to get T'. Therefore the number of edges in T is n -
2 + 1 = n - 1. █

Think of it as a rooted tree:
every node except the root
has 1 edge to its parent

traversal of a rooted tree

A

B

D

G

C

E

H

F

I

Pre order

Process the node
Visit its children

A B D G H C E F I

Post order

Visit the children
Process the node

G H D B E I F C A

traversal of a rooted tree

A

B

D

G

C

E

H

F

I

Pre order

Process the node
Visit its children

A B D G H C E F I

Post order

Visit the children
Process the node

G H D B E I F C A

which node gets processed first/last in each of these traversals?

traversal of a rooted tree

pre-order(v)
process(v)
for every child w of v:

pre-order(w)

post-order(v)
For every child w of v:

post-order(w)
process(v)

A

B

D

G

C

E

H

F

I

a trick for pre-order traversal

To determine the order in which nodes are traversed in pre-
order:
Follow the contour starting at the root; visit a vertex when
passing to its left.

a trick for post-order traversal

To determine the order in which nodes are traversed in post-
order:
Follow the contour starting at the root; visit a vertex when
passing to its right.

counting leaves with post-order traversal

post-order-leaf-count(v)
for every child w of v:

post-order-leaf-count(w)
if v is a leaf:

leaf-count(v) = 1
else :

leaf-count(v) = sum of leaf counts of children

computing properties of trees using post-order

post-order-leaf-count(v)
for every child w of v:

post-order-leaf-count(w)
if v is a leaf:

leaf-count(v) = 1
else :

leaf-count(v) = sum of leaf counts of children

Other properties that can be computed similarly:
ü the total number of vertices in the tree.
ü the height

traversal of a rooted binary tree

pre-order
■ process the vertex
■ go left
■ go right

in-order
■ go left
■ process the vertex
■ go right

post-order
■ go left
■ go right
■ process the vertex

level order / breadth first
■ for d = 0 to height

– process vertices at level d
A

B

D

G

C

E

H

F

I

graph traversal

What makes it different from rooted tree traversal:

■ graphs have cycles

What to do about it?

graph traversal

What makes it different from rooted tree traversal:

■ graphs have cycles

What to do about it?

mark the vertices

depth-first search

Idea:
Go as deep as you can; backtrack when you get stuck

depth-first search

Pseudo-code:

dfs(v):
mark v as explored
for every neighbor w of v :

if w is not explored :
dfs(w)

dfs - nonrecursively

dfs(v) :
s – stack of vertices to be processed
mark v as explored
s.push(v)
while(s is non empty) :

u = s.pop()
for (each vertex v adjacent to u) :

if v is not explored :
mark v as explored
s.push(v)

dfs(v):
mark v as explored
for every neighbor w of v :

if w is not explored :
dfs(w)

dfs vs bfs

DFS: Explores from the most recently discovered
vertex; backtracks when reaching a dead-end.

BFS: Explores in order of distance from starting
point

breadth first search

BFS intuition. Explore outward from s, adding
vertices one "layer" at a time.

BFS algorithm.
■ L0 = { s }.
■ L1 = all neighbors of L0.
■ L2 = all vertices that do not belong to L0 or L1, and

that have an edge to a vertex in L1.
■ Li+1 = all vertices that do not belong to an earlier

layer, and that have an edge to a vertex in Li.

s L1 L2 L n-1

BFS - implementation

bfs(v) :
q – queue of vertices to be processed
mark v as explored
q.enque(v)
while(q is not empty) :

u = q.dequeue()
for (each vertex v adjacent to u) :

if v is not explored :
mark v as explored
q.enqueue(v)

BFS - example

breadth first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency list representation.
Proof:

– when we consider vertex u, there are deg(u) incident edges (u, v)
– total time processing edges is SuÎV deg(u) = 2m �

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

bfs(v) :
q – queue of vertices to be processed
mark v as explored
q.enque(v)
while(q is not empty) :

u = q.dequeue()
for (each vertex v adjacent to u) :

if v is not explored :
mark v as explored
q.enqueue(v)

DFS - Analysis

Theorem. The above implementation of DFS runs in O(m + n) time if
the graph is given by its adjacency list representation.
Proof:

Same as in BFS ▪

DFS(v) :
s – stack of vertices to be processed
s.push(v)
mark v as Explored
while(s is non empty) :

u = s.pop()
for (each vertex v adjacent to u) :

if v is not Explored :
mark v as Explored
s.push(v)

detecting cycles with dfs

How would you modify DFS to detect cycles?

dfs(v):
mark v as explored
for every neighbor w of v :

if w is not explored :
dfs(w)

DFS and cyclic graphs
There are two ways DFS can revisit a node:
1. DFS has already fully explored
the node. What color does it have
then? Is there a cycle then?
No, the node is revisited
from outside.

2. DFS is still exploring this node.
What color does it have in this
case? Is there a cycle then?
Yes, the node is revisited on a
path containing the node itself.

So DFS with the white, grey, black coloring scheme detects a
cycle when a GREY node is visited.

36

Cycle detection: DFS + coloring
37

When a grey (frontier) node is visited, a cycle is detected.

Recursive / node coloring version

DFS(u):
#c: color, p: parent
c[u]=grey
forall v in Adj(u):

if c[v]==white:
p[v]=u
DFS(v)

c[u]=black

The above implementation of DFS runs in O(m + n) time if
the graph is given by its adjacency list representation.
Proof:

Same as in BFS ▪

spanning trees

A spanning tree of a connected graph G is a subgraph of G which
contains all the vertices in G and is a tree.

http://mathworld.wolfram.com/SpanningTree.html

computing spanning trees using graph traversal

A spanning tree can be computed by a variation on DFS:

can also be computed using BFS.

dfs-spanning-tree() :
T is an empty tree
add v to T
visit(v)

visit(v):
for every neighbor w of v :

if w is not in T :
add w and {v, w} to T
visit(w)

weighted graphs

A weighted graph is a graph G = (V ,E), along with a function
w: E → R. The function w assigns a real number to every edge.

minimum spanning trees

Motivating example: each house in the neighborhood needs to be
connected to cable
■ Graph where each house is a vertex.
■ Need the graph to be connected, and minimize the cost of laying the

cables.

Model the problem with weighted graphs

Minimum spanning tree
■ Spanning tree minimizing the sum of edge weights

Incrementally build spanning tree by adding the
least-cost edge to the tree

A
B

C

4

2

3

g ef

di

cba

h

4

8 7

9

10

7
4

2

11

8
7

1 2

6

g

d

f e

i

cb

h

a

{(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a) }

Prim's algorithm

unique?

Prim's algorithm

prims(G):
Input: An undirected, connected, weighted graph G
Output: T, a minimum spanning tree for G.

T = ∅
pick any vertex in G and add it to T.

for j = 1 to n-1 :
let C be the set of edges with one endpoint

in T and one endpoint outside T
let e be a minimum weight edge in C
add e to T.
add the endpoint of e not already in T to T

45
The cut property

Simplifying assumption. All edge costs are distinct.
Cut property. Let S be a subset of nodes, S neither
empty nor equal V, and let e be the minimum cost edge
with exactly one endpoint in S.
Then the MST contains e.

The cut property establishes the correctness of Prim’s
algorithm.

S

e is in the MST

e

46
The cut property

Cut property. Let S be a subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then the MST T
contains e.
Proof. (exchange argument)
■ If e =(v,w) is the only edge connecting S and V-S it must be

in T, else e is on a cycle in the graph (not the MST). Now
suppose e does not belong to T.

■ Let e’= (v',w') be the first edge between S and V-S on the
path from v'. T' = T È { e } - { e’ } is also a spanning tree.

■ Since ce < ce’, cost(T') < cost(T).
■ This is a contradiction. �

w’v’

v

w

e’

e

S

c

as

b

∞

2

7 1

2

1

b

s

1
c

2 a

2

7 1

2

1

s

b

c

1 a

2

7 1

2

1

s

b

c

a

2

7 1

2

1

∞

∞

0 s

2

b

7

∞

2

7 1

2

1

c

a

PQ: s:0 a:∞ b:∞ c:∞ PQ: b:2 c:7 a:∞

PQ: c:1 a:2

PQ: a:1

PQ:

Shortest Paths Problems

Given a weighted directed graph G=(V,E)
find the shortest path

■ path length is the sum of its edge weights.

The shortest path from u to v is ¥ if there is no path from u to v.
Variations:

1) SSSP (Single source SP): find the SP from some node s to all
nodes in the graph.

2) SPSP (single pair SP): find the SP from some u to some v.
We can use 1) to solve 2), also there is no asymptotically faster
algorithm for 2) than that for 1).

3) SDSP (single destination SP) can use 1) by reversing its edges.
4) APSP (all pair SPs) could be solved by |V| applications of 1), but

can be solved faster (cs420).

Dijkstra SSSP
Dijkstra's (Greedy) SSSP algorithm only works for graphs
with only positive edge weights.

S is the set of explored nodes
For each u in S, d[u] is a distance
Init: S = {s} the source, and d[s]=0
while S≠V:

select a node v in V-S with at least one edge
from S, for which d'[v]=mine=(u,v),u in Sd[u]+we

add v to S (S=S+v)
d[v]=d'[v]

To compute the actual minimum paths, maintain an array p[v]
of predecessors.

Notice: Dijkstra is very similar to Primm's MST algorithm

the minimum path extending out of S

0s

∞

b

∞

c

∞ a

2

7 1

5

2

1

b

0s

2

7

c

∞ a

2

7 1

5

2

1

0s

2

b

3

c

7 a

2

7 1

5

2

1 0s

2

b

3

c

a

2

7 1

5

2

1 4

Dijkstra works

For each u in S, the path Ps,u is the shortest (s,u) path

Proof by induction on the size of S

Base: |S| = 1 d[s]=0 OK

Step: Suppose it holds for |S|=k>=1, then grow S by 1 adding node
v using edge (u,v) (u already in S) to create the next S.

Then path Ps,u,v is path Ps,u+(u,v), and is the shortest path to v

WHY? What are the "ingredients" of an exchange argument?
What are the inequalities?

Greedy exchange argument
Assume there is another path P from s to v.
P leaves S somewhere with edge (x,y).
Then the path P goes from s to x to y to v.
What can you say about P: s à* x à y compared to Ps,u,v? How
does the algorithm pick Ps,u,v? Why does it not work for
negative edges?

s

x

u

y

v
set S

next S

P from s to y is at least as
long as Ps,u,v because the algorithm
picks the shortest extension out
of S.

Hence the path
P: s à* x à y à* v is at least as long

as
Ps,u,v: s à* u à v

Would not work if w(y,v) <0

