CS 220: Discrete Structures and their Applications

Trees Chapter 11 in zybooks

A tree is an undirected graph that is connected and has no cycles.

Rooted trees. Given a tree T, choose a root node r and orient each edge away (down) from r.

the same tree, rooted at 1

Rooted trees model hierarchical structure. The file system as a rooted tree:

phylogenetic trees

Phylogeny. Describe the evolutionary history of species.

(Redrawn after Johnson, et al, 2006)

http://www.whozoo.org/mammals/Carnivores/Cat_Phylogeny.htm

game trees

games can be represented by trees:

The root is the initial configuration.

The children of a state c are all the configurations that can be reached from c by a single move.

A configuration is a leaf in the tree if the game is over.

Rooted trees. Given a tree T, choose a root node r and orient each edge away from r.

The level of a node is its distance from the root The height of a tree is the highest level of any vertex.

Every vertex in a rooted tree has a unique parent, except for the root which does not have a parent.

- Every vertex along the path from v to the root (except for the vertex v itself) is an ancestor of v.
- A leaf is a vertex which has no children.

Two vertices are siblings if they have the same parent. A subtree rooted at vertex v is the tree consisting of v and all v's descendants.

A leaf of an unrooted tree is a vertex of degree 1. If a tree has only one vertex, then that vertex is a leaf. A vertex is an internal vertex if the vertex has degree at least two.

A leaf of an unrooted tree is a vertex of degree 1.

Theorem: Any unrooted tree with at least two vertices has at least two leaves.

Proof.

Consider the longest path in the tree.

Its end vertices are both leaves.

But: what about a rooted tree?

Theorem: There is a unique path between every pair of vertices in a tree.

Proof.

There is a path between every pair of vertices because a tree is connected. It remains to be seen that the path is unique.

Let's assume that the path is not unique:

Theorem: Let T be a tree with n vertices and m edges, then m = n - 1.

Proof. By induction on the number of vertices. Base case: is where n = 1. If T has one vertex, then it is has no edges, i.e. m = 0 = n - 1.

Theorem: Let T be a tree with n vertices and m edges, then m = n - 1. Inductive step: assume the theorem holds for trees with n-1 vertices and prove that it holds for trees with n vertices.

Consider an arbitrary tree T with n vertices. Let v be one of the leaves. Remove v from T along with the edge e incident to v. The resulting graph (call it T') is also a tree and has n-1 vertices.

Theorem: Let T be a tree with n vertices and m edges, then m = n - 1.

By the induction hypothesis, The number of edges in T' is (n - 1) - 1 = n - 2. T has exactly one more edge than T', because only edge e was removed from T to get T'. Therefore the number of edges in T is n - 2 + 1 = n - 1.

Think of it as a rooted tree: every node except the root has 1 edge to its parent

traversal of a rooted tree

Pre order

Process the node Visit its children

ABDGHCEFI

Post order

Visit the children Process the node

GHDBEIFCA

traversal of a rooted tree

Pre order

Process the node Visit its children

ABDGHCEFI

Post order

Visit the children Process the node

GHDBEIFCA

which node gets processed first/last in each of these traversals?

traversal of a rooted tree

```
pre-order(v)
process(v)
for every child w of v:
    pre-order(w)
```

```
post-order(v)
For every child w of v:
    post-order(w)
process(v)
```


a trick for pre-order traversal

To determine the order in which nodes are traversed in preorder:

Follow the contour starting at the root; visit a vertex when passing to its left.

a trick for post-order traversal

To determine the order in which nodes are traversed in postorder:

Follow the contour starting at the root; visit a vertex when passing to its right.

counting leaves with post-order traversal

```
post-order-leaf-count(v)
for every child w of v:
    post-order-leaf-count(w)
if v is a leaf:
    leaf-count(v) = 1
else :
    leaf-count(v) = sum of leaf counts of children
```

computing properties of trees using post-order

```
post-order-leaf-count(v)
for every child w of v:
    post-order-leaf-count(w)
if v is a leaf:
    leaf-count(v) = 1
else :
    leaf-count(v) = sum of leaf counts of children
```

Other properties that can be computed similarly:

- the total number of vertices in the tree.
- the height

traversal of a rooted binary tree

pre-order

- process the vertex
- go left
- go right

in-order

- go left
- process the vertex
- go right

post-order

- go left
- go right

Α

E

C

B

Η

D

process the vertex

level order / breadth first

- for d = 0 to height
 - process vertices at level d

graph traversal

What makes it different from rooted tree traversal:

- graphs have cycles
- What to do about it?

graph traversal

What makes it different from rooted tree traversal:

graphs have cycles

What to do about it?

mark the vertices

depth-first search

Idea:

Go as deep as you can; backtrack when you get stuck

depth-first search

Pseudo-code:

```
dfs(v):
    mark v as explored
    for every neighbor w of v :
        if w is not explored :
            dfs(w)
```

dfs - nonrecursively

```
dfs(v):
    mark v as explored
    for every neighbor w of v :
        if w is not explored :
            dfs(w)
```

```
dfs(v) :
   s - stack of vertices to be processed
   mark v as explored
   s.push(v)
   while(s is non empty) :
        u = s.pop()
        for (each vertex v adjacent to u) :
            if v is not explored :
                mark v as explored
                s.push(v)
```

dfs vs bfs

DFS: Explores from the most recently discovered vertex; backtracks when reaching a dead-end.

BFS: Explores in order of distance from starting point

breadth first search

BFS intuition. Explore outward from s, adding vertices one "layer" at a time.

BFS algorithm.

- L₀ = { s }.
- L_1 = all neighbors of L_0 .
- L_2 = all vertices that do not belong to L_0 or L_1 , and that have an edge to a vertex in L_1 .
- L_{i+1} = all vertices that do not belong to an earlier layer, and that have an edge to a vertex in L_i .

BFS - implementation

```
bfs(v) :
  q - queue of vertices to be processed
  mark v as explored
  q.enque(v)
  while(q is not empty) :
    u = q.dequeue()
    for (each vertex v adjacent to u) :
        if v is not explored :
            mark v as explored
        q.enqueue(v)
```

BFS - example

breadth first search: analysis

```
bfs(v) :
  q - queue of vertices to be processed
  mark v as explored
  q.enque(v)
  while(q is not empty) :
    u = q.dequeue()
    for (each vertex v adjacent to u) :
        if v is not explored :
            mark v as explored
        q.enqueue(v)
```

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency list representation. Proof:

- when we consider vertex u, there are deg(u) incident edges (u, v)
- total time processing edges is $\sum_{u \in V} deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

DFS - Analysis

```
DFS(v) :
  s - stack of vertices to be processed
  s.push(v)
  mark v as Explored
  while(s is non empty) :
     u = s.pop()
     for (each vertex v adjacent to u) :
        if v is not Explored :
            mark v as Explored
        s.push(v)
```

Theorem. The above implementation of DFS runs in O(m + n) time if the graph is given by its adjacency list representation. Proof:

Same as in BFS -

detecting cycles with dfs

How would you modify DFS to detect cycles?

```
dfs(v):
    mark v as explored
    for every neighbor w of v :
        if w is not explored :
            dfs(w)
```

DFS and cyclic graphs There are two ways DFS can revisit a node: 1. DFS has already fully explored the node. What color does it have then? Is there a cycle then? No, the node is revisited from outside.

2. DFS is still exploring this node.
What color does it have in this case? Is there a cycle then?
Yes, the node is revisited on a path containing the node itself.

So DFS with the white, grey, black coloring scheme detects a cycle when a GREY node is visited.

Cycle detection: DFS + coloring

When a grey (frontier) node is visited, a cycle is detected.

Recursive / node coloring version

```
DFS(u):
   #c: color, p: parent
   c[u]=grey
   forall v in Adj(u):
     if c[v]==white:
       p[v]=u
       DFS(v)
   c[u]=black
```

The above implementation of DFS runs in O(m + n) time if the graph is given by its adjacency list representation. Proof:

Same as in BFS •

spanning trees

A spanning tree of a connected graph G is a subgraph of G which contains all the vertices in G and is a tree.

computing spanning trees using graph traversal

A spanning tree can be computed by a variation on DFS:

```
dfs-spanning-tree() :
   T is an empty tree
   add v to T
   visit(v)
visit(v):
   for every neighbor w of v :
        if w is not in T :
            add w and {v, w} to T
            visit(w)
```

can also be computed using BFS.

weighted graphs

A weighted graph is a graph G = (V, E), along with a function w: $E \rightarrow R$. The function w assigns a real number to every edge.

minimum spanning trees

Motivating example: each house in the neighborhood needs to be connected to cable

- Graph where each house is a vertex.
- Need the graph to be connected, and minimize the cost of laying the cables.

Model the problem with weighted graphs

Minimum spanning tree

Spanning tree minimizing the sum of edge weights

Incrementally build spanning tree by adding the least-cost edge to the tree

Prim's algorithm

 $\{(d,c),(c,b), (b,i), (b,e), (e,f), (f,g), (g,h), (h,a)\}$

Prim's algorithm

```
prims(G):
   Input: An undirected, connected, weighted graph G
   Output: T, a minimum spanning tree for G.
   T = \emptyset
   pick any vertex in G and add it to T.
   for j = 1 to n-1 :
      let C be the set of edges with one endpoint
           in T and one endpoint outside T
      let e be a minimum weight edge in C
      add e to T.
      add the endpoint of e not already in T to T
```

The cut property

Simplifying assumption. All edge costs are distinct. Cut property. Let S be a subset of nodes, S neither empty nor equal V, and let e be the minimum cost edge with exactly one endpoint in S.

Then the MST contains e.

The cut property establishes the correctness of Prim's algorithm.

The cut property

Cut property. Let S be a subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T contains e.

Proof. (exchange argument)

- If e =(v,w) is the only edge connecting S and V-S it must be in T, else e is on a cycle in the graph (not the MST). Now suppose e does not belong to T.
- Let e'= (v',w') be the first edge between S and V-S on the path from v'. T' = T \cup { e } { e' } is also a spanning tree.
- Since $c_e < c_{e'}$, cost(T') < cost(T)
- This is a contradiction.

Shortest Paths Problems

Given a **weighted directed** graph G=(V,E)

- find the shortest path
- path length is the sum of its edge weights.

The shortest path from u to v is ∞ if there is no path from u to v. Variations:

1) **SSSP** (Single source SP): find the SP from some node s to all nodes in the graph.

2) **SPSP** (single pair SP): find the SP from some u to some v.

We can use 1) to solve 2), also there is no asymptotically faster algorithm for 2) than that for 1).

3) **SDSP** (single destination SP) can use 1) by reversing its edges.

4) APSP (all pair SPs) could be solved by |V| applications of 1), but can be solved faster (cs420).

Dijkstra SSSP

Dijkstra's (Greedy) SSSP algorithm only works for graphs with only positive edge weights.

```
S is the set of explored nodes

For each u in S, d[u] is a distance

Init: S = {s} the source, and d[s]=0

while S \neq V:

select a node v in V-S with at least one edge

from S, for which d'[v]=m[n_{e=(u,v),u in S}d[u]+w_e

add v to S (S=S+v)

d[v]=d'[v]
```

To compute the actual minimum paths, maintain an array p[v] of predecessors.

Notice: Dijkstra is very similar to Primm's MST algorithm

Dijkstra works

For each u in S, the path $P_{s,u}$ is the shortest (s,u) path

Proof by induction on the size of S

```
Base: |S| = 1 d[s]=0 OK
```

Step: Suppose it holds for |S|=k>=1, then grow S by 1 adding node v using edge (u,v) (u already in S) to create the next S. Then path $P_{s,u,v}$ is path $P_{s,u}$ +(u,v), and is the shortest path to v

WHY? What are the "ingredients" of an exchange argument? What are the inequalities?

Greedy exchange argument Assume there is another path P from s to v. P leaves S somewhere with edge (x,y). Then the path P goes from s to x to y to v. What can you say about $P: s \rightarrow^* x \rightarrow y$ compared to $P_{s,u,v}$? How does the algorithm pick $P_{s,u,v}$? Why does it not work for negative edges? P from s to y is at least as X long as $P_{s,u,v}$ because the algorithm picks the shortest extension out of S. 11 Hence the path set S P: $s \rightarrow x \rightarrow y \rightarrow y \rightarrow z$ v is at least as long next S as $P_{s,u,v}$: $s \rightarrow * u \rightarrow v$

Would not work if w(y,v) <0