
CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~cs250
PROFESSOR: Shrideep Pallickara

Page 1 of 5

Homework 2
PROFILING THE IMPACT OF CACHING, MEMORY ACCESSES, AND CHOICE OF DATA STRUCTURES

VERSION 1.1

The objective of this assignment is to demonstrate the effects of caching, pre-fetching, the memory
hierarchy, and how different data structures affect accessing memory. The programming assignment
should be implemented in Java. You are required to work alone on this assignment. The assignment
accounts for 7.5% towards your cumulative course grade.

This assignment may be modified to clarify any questions (and the version number incremented), but
the crux of the assignment and the distribution of points will not change. If there are any changes to
the assignment, all changes will be documented in the “Change History” section of this assignment.

DUE DATE: Wednesday, March 6th @ 8:00 pm

1 Description of Task

As part of this assignment, you will be responsible for measuring the cumulative effects of registers,
caching, and fetching from main memory. The programming assignment should be developed in Java,
and your classes must reside in the package cs250.hw2.

Your program will be provided with 3 arguments at the command line. You are required to perform a
set of experiments that are configured using the specified arguments. The points distribution for each
task and the restrictions (and accompanying deductions) are specified in the grading section of this
assignment.

Command line execution: java cs250.hw2.Memory <size> <experiments> <seed>

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~cs250
PROFESSOR: Shrideep Pallickara

Page 2 of 5

1.1 Task 1

The first task involves contrasting the performance of programs with and without caching. In particular,
you will be working with the volatile keyword in Java. The volatile keyword informs the compiler
that the variable should not be cached and accesses should always go to main memory.

To profile the impact of caching, you will be contrasting the performance of loops when the loop variable
is marked volatile and when the volatile keyword is not used for the loop variable.

Your loop will maintain a running total of the addition and subtraction operations using the loop variable.
The choice of whether you perform an addition or subtraction to the runningTotal is based on whether
the loop variable is odd or even for the given iteration. If the loop variable is even (e.g., 10) then you
should add the loop variable to the runningTotal; if the loop variable is odd (e.g., 37) then you should
subtract the loop variable from the runningTotal. To cope with potential overflows/underflows
runningTotal should be a long variable type.

For <experiments> times calculate the average time taken to perform runningTotal when the loop
variable ranges from [0, <size>).

Produce a short report (450-500 words) with graphs and/or tables describing the observed behavior
when using the volatile keyword versus without.

1.2 Task 2:

Allocate an array with size <size> and fill it with random numbers using the <seed> to seed the random
number generator. To get the most noticeable effect use the Integer type rather than the primitive int
type. For <experiments> times do the following:

Calculate the time to access each element in the first 10% of the array and a single random element in
the last 10% of the array.

Next, maintain a sum of each of the elements accessed and report the average across experiments for
each of the following:

1. Time to access a single element in the first 10% of the array.
2. Time to access a single random element in the last 10% of the array.
3. Sum of the elements

Produce a short report (450-500 words) with graphs and/or tables describing the observed behavior
when accessing elements at the prescribed portions of the array.

1.3 Task 3:

Allocate a TreeSet and LinkedList both with size <size> and fill both structures with the range of
numbers [0, size).

For <experiments> times do the following:

• Calculate a random number in the range [0, size) and time how long the .contains() method
takes to find if the element exists in the structure.

Report the average time for each of the structures to find if the element exists.

Produce a short report (450-500 words) with graphs and/or tables describing the observed behavior
when using TreeSet versus a LinkedList.

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~cs250
PROFESSOR: Shrideep Pallickara

Page 3 of 5

2 Example Outputs

Command: java cs250.hw2.Memory 25000000 1 42

Task 1

Regular: 0.02633 seconds

Volatile: 0.16463 seconds

Avg regular sum: -12500000.00

Avg volatile sum: -12500000.00

Task 2

Avg time to access known element: 15.13 nanoseconds

Avg time to access random element: 646.00 nanoseconds

Sum: -1005470868.00

Task 3

Avg time to find in set: 69055.00 nanoseconds

Avg time to find in list: 83721555.00 nanoseconds

Command: java cs250.hw2.Memory 25000000 20 42

Task 1

Regular: 0.04676 seconds

Volatile: 0.16412 seconds

Avg regular sum: -12500000.00

Avg volatile sum: -12500000.00

Task 2

Avg time to access known element: 15.27 nanoseconds

Avg time to access random element: 146.75 nanoseconds

Sum: -834230.20

Task 3

Avg time to find in set: 9709.15 nanoseconds

Avg time to find in list: 99872813.60 nanoseconds

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~cs250
PROFESSOR: Shrideep Pallickara

Page 4 of 5

Command: java cs250.hw2.Memory 25000000 200 42

Task 1

Regular: 0.04752 seconds

Volatile: 0.16394 seconds

Avg regular sum: -12500000.00

Avg volatile sum: -12500000.00

Task 2

Avg time to access known element: 15.23 nanoseconds

Avg time to access random element: 125.23 nanoseconds

Sum: -9199369.91

Task 3

Avg time to find in set: 6214.98 nanoseconds

Avg time to find in list: 75832812.82 nanoseconds

3 What to Submit
Use the CS250 Canvas to submit a single .zip file that contains:

• <FirstName>-<LastName>-Writeup.pdf

• Your java source codes, matching this directory structure:

o cs250

§ hw2

• Memory.java

• A README.txt file containing a description of each file and any information you feel the TAs need
to grade your program.

Filename Convention: The archive file should be named as <FirstName>-<LastName>-HW2.zip . E.g.,
if you are Cameron Doe then the zip file should be named Cameron-Doe-HW2.zip.

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~cs250
PROFESSOR: Shrideep Pallickara

Page 5 of 5

4 Grading
The assignments must compile and function correctly on machines in the CSB-120 Lab. Assignments
that work on your laptop on your particular flavor of Linux, but not on the Lab machines are considered
unacceptable.

This assignment will contribute a maximum of 7.5 points towards your final grade. The grading will also
be done on a 7.5 point scale. The points breakdown is as follows:

2.5 points each for correctly performing Tasks 1, 2, and 3.
 Note that the report writing component accounts for 1 point in each of the tasks.
 Note that the formatting for each task should match the example outputs exactly.

Deductions:

0.5 points each for not following the specified formatting for Tasks 1, 2, and 3.
2.5 points if programs need manual intervention when running.

Note this includes:
• Compilation errors
• Any extra steps required to run the program. Example outputs include the

command that should be used to generate that output.

You are required to work alone on this assignment.

5 Late Policy
Please check the class policy on submitting late assignments. You are allowed to submit assignments
up to 2 days with a per-day deduction of 7.5%.

6 Version Change History
This section will reflect the change history for the assignment. It will list the version number, the date
it was released, and the changes that were made to the preceding version. Changes to the first public
release are made to clarify the assignment; the spirit or the crux of the assignment will not change.

Version Date Comments
1.0 2/13/2024 First public release of the assignment.
1.1 2/26/2024 Clarify “average sum” of elements across the experiments

in Task 2

