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The Stored Program Concept
A limited repertoire you say?
     Well … it’s just like Lego
          Only with a surfeit of pieces

Mix, match and combine in ways
     That are infinite 
          Literally and metaphorically

All leading to a machine
     With limits 
          constrained only by creativity
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Frequently asked questions from the previous class 
survey

¨ What do general purpose registers typically hold?

¨ How can programs function without knowing that there is a cache?
¨ If a program is updating variables that are currently in the cache, 

does it write to the cache and main memory?

¨ When something is evicted from the cache is it saved in main memory?
¨ When something is evicted, what if it is needed soon after?

¨ If cache hit rates are high, why do we even need a big main memory?
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Topics covered in this lecture

¨ Caching
¤ Direct mapped
¤ Associative
¤ N-way associativity

¨ Stored Program Concept
¨ The von Neumann architecture
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Generally, if a cache line is n bytes long

¨ It will hold n bytes from main memory that fall on an n-byte boundary

¨ In our example of 16-byte cache lines, a cache line holds blocks of 16 
bytes whose addresses fall on 16-byte boundaries in main memory 
¤ i.e., the least-significant 4 bits of the address of the first byte in the cache 

line are always 0

… … 16-byte 
cache line

8 KB with 512 16-byte cache lines
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Types of caches

¨ Direct mapped caches

¨ Fully associative caches
¨ N-way associative caches

6



SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.7

A direct mapped cache is also known as a one-way 
associative cache

¨ In a direct-mapped cache, a particular block of main memory is 
always loaded into—mapped to—the exact same cache line

¨ This mapping is determined by a small number of bits in the data 
block’s memory address 
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Direct-mapped Cache

31 13 12 4 3 0

… 16-byte 
cache line

8 KB with 512 16-byte cache lines

9 bits (4 through 12) of the physical memory 
address provide an index to select one of 
the 512 cache lines within the cache (29=512)

bits 0 through 3 determine the 
particular byte within the 16-
byte cache line 
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Problems with a direct mapped cache

¨ Two different memory addresses located on 8KB boundaries cannot 
both appear simultaneously in the cache

¨ How many such addresses exist in our 32-bit system?
¤ 219 8KB blocks exist in our system
¤ 219 512 (29) blocks of 16-bytes (24) each

n 219. 29 . 24 = 232 (the size of the main memory in our example)
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The ideal world: A fully associative cache

¨ The cache controller can place a block of bytes in any one of the 
cache lines present in the cache memory

¨ While this is the most flexible cache system, the extra circuitry to 
achieve full associativity is expensive and, worse, can slow down the 
memory subsystem

¨ Most L1 and L2 caches are not fully associative for this reason
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Trade-off space

¨ A fully associative cache is too complex, too slow, and too expensive 
to implement

¨ But a direct-mapped cache is too inefficient
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A compromise: the n-way associative cache

¨ In an n-way set associative cache, the cache is broken up into sets of n
cache lines

¨ The CPU determines the particular set to use based on 
¤ Some subset of the memory address bits, just as in the direct-mapping 

scheme, and …
¤ The cache controller uses a fully associative mapping algorithm to determine 

which one of the n cache lines within the set to use
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For example, an 8KB two-way set associative cache 
subsystem with 16-byte cache lines                  [1/2]

¨ Organizes the cache into 256 cache-line sets with two cache lines 
each

¨ Eight bits from the memory address determine which one of these 256 
different sets will contain the data
¤ 28 = 256

¨ Once the cache-line set is determined, the cache controller maps the 
block of bytes to one of the two cache lines within the set
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For example, an 8KB two-way set associative cache 
subsystem with 16-byte cache lines                  [2/2]

¨ This means two different memory addresses located on 8KB 
boundaries (addresses having the same value in bits 4 through 11) can 
both appear simultaneously in the cache

¨ However, a conflict will occur if you attempt to access a third memory 
location at an address that is an even multiple of 8KB
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An 8 KB two-way set associative cache subsystem 
with 16-byte cache lines

31 12 11 4 3 0

… 16-byte 
cache line

8 KB with 2-way set associative cache with 256 sets of 
two (16-byte) cache lines each 

The cache controller chooses one of two
different cache lines within the set 28=256

bits 0 through 3 determine the 
particular byte within the 16-
byte cache line 

A cache line set
comprising 
two cache lines

Eight bits (11 through 4) provide index to select
one of 256 sets 28=256 
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What if we have a 4-way associative cache

¨ A four-way set associative cache puts four associative cache lines in 
each cache-line set

¨ In our example, 8KB cache, a four-way set associative caching scheme 
would have 128 cache-line sets with four cache lines each

¨ This would allow the cache to maintain up to four different blocks of 
data without a conflict, each of which would map to the same cache 
line in a direct-mapped cache
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2-/4-way set associative vs direct mapped 

¨ A 2- or 4-way set associative cache is 
¤ Much better than a direct-mapped cache and 
¤ Considerably less complex than a fully associative cache
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Can we keep increasing the number of lines in each 
cache-line set?

¨ The more cache lines we have in each cache-line set, the closer we 
come to creating a fully associative cache
¤ With all the attendant problems of complexity and speed

¨ Most cache designs are direct-mapped, two-way set associative, or 
four-way set associative
¤ The various members of the 80x86 family make use of all three
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An analogy: You at a government office

¨ Some interactions can be completed using your IDs/cards (in your 
wallet), documents (in your backpack), and documents (at home)
¤ Items can be retrieved from the wallet in 2 seconds
¤ The bag needs to be searched, and it takes about 120 seconds to do so
¤ The trip home and back will take 36,000 seconds (or 10 hours)

¨ Average time to complete transaction if your wallet suffices 95% of 
the time but the backpack comes into play 5% of time?
¤ 0.95 * (wallet_time) + 0.05 * (backpack_time)
¤ 0.95 * 2 + 0.05 * 120 = 7.9 seconds
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An analogy: You at a government office

¨ Average time to complete transaction if your wallet suffices 95% of 
the time but the backpack comes into play 4% of time and you need 
to go home 1% of the time?
¤ 0.95 * (wallet_time) + 0.04 * (backpack_time) + 0.01 (home_trip)
¤ 0.95 * 2 + 0.04 * 120 + 0.01 * 36,000 = 505.9 seconds
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Let’s make it a little more real

¨ Cache access: 2 ns
¨ Main memory access: 50 ns
¨ Disk access: 8 milliseconds [8,000,000 ns]
¨ 97% cache and 3% main memory

¤ 0.97 * 2 + 0.03 * 50 = 3.4 ns

¨ 95% cache and 5% main memory
¤ 0.95 * 2 + 0.05 * 50 = 4.4 ns

¨ 95% cache, 4% main memory, and 1% disk
¤ 0.95 * 2 + 0.04 * 50 + 0.01 * 8,000,000 = 80,003.9 ns
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Etymology Tidbit: Program “execution”

¨ Execute
¤ Verb
¤ Carry out or put into affect a plan, order, or course of action

¨ Contrary to some lore
¤ No bits are actually “killed” when a program “executes”
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The Stored Program Concept                   [1/2]

¨ Compared to all the machines around us, the most remarkable feature 
of the digital computer is its amazing versatility

¨ Here is a machine with a finite and fixed hardware that can perform 
an infinite number of tasks
¤ From playing games to typesetting books to driving cars

¨ This remarkable versatility—a boon that we have come to take for 
granted—is the fruit of a brilliant early idea called the stored 
program concept 
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The Stored Program Concept                   [2/2]

¨ Formulated independently by several scientists and engineers in the 
1930s

¨ The stored program concept is still considered the most profound 
invention in, if not the very foundation of, modern computer science. 
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The Stored Program Concept: Like many scientific 
breakthroughs, the basic idea is simple

¨ The computer is based on a fixed hardware platform capable of 
executing a fixed repertoire of simple instructions

¨ At the same time, these instructions can be combined like building 
blocks, yielding arbitrarily sophisticated programs
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Moreover, the logic of these programs is not 
embedded in the hardware

¨ As was customary in mechanical computers predating 1930

¨ Instead, the program’s code is temporarily stored in the computer’s 
memory, like data
¤ Becoming what is known as software
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Since the computer’s operation manifests itself to the 
user through the currently executing software …

¨ The same hardware platform can be made to behave completely 
differently each time it is loaded with a different program
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The stored program concept in models of computing

¨ The stored program concept is the key element of both abstract and 
practical computer models
¤ Notably the Turing machine (1936) and the von Neumann machine (1945)

¨ The Turing machine is an abstract artifact describing a deceptively 
simple computer
¤ Is used mainly in theoretical computer science for analyzing the logical 

foundations of computation 

¨ In contrast, the von Neumann machine is a practical model that 
informs the construction of almost all computer platforms today
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THE VON NEUMANN ARCHITECTURE

Make everything as simple as possible, but not simpler. 
—Albert Einstein (1879–1955)
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The von Neumann architecture

¨ The von Neumann architecture is based on a Central Processing Unit 
(CPU)
¤ Interacting with a memory device
¤ Receiving data from some input device, and 
¤ Emitting data to some output device 

¨ At the heart of this architecture lies the stored program concept: 
¤ The computer’s memory stores not only the data that the computer manipulates 
¤ But also, the instructions that tell the computer what to do
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A generic von Neumann computer architecture

Instructions

Data

CPU

A
LU

…

Registers

Output
Input

Memory
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The computer’s Memory can be discussed from both 
physical and logical perspectives

¨ Physically, the memory is a linear sequence of addressable bytes, 
each having a unique address and a value

¨ Logically, this address space serves two purposes: storing data and 
storing instructions
¤ Both the “instruction words” and the “data words” are implemented exactly 

the same way—as sequences of bits
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Instruction Memory                                  [1/2]

¨ Before a high-level program can be executed on a target computer, it 
must first be translated into the machine language of the target 
computer 

¨ Each high-level statement is translated into one or more low-level 
instructions
¤ Written as binary values to a file called the binary, or executable, version 

of the program 

¨ Before running a program:
¤ First load its binary version from a mass storage device, and 
¤ Serialize its instructions into the computer’s instruction memory
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Instruction Memory                                  [2/2]

¨ From the pure focus of computer architecture, how a program is 
loaded into the computer’s memory is considered an external issue

¨ What’s important is that when the CPU is called upon to execute a 
program
¤ The program’s code will already reside in the computer’s memory
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Data Memory

¨ High-level programs are designed to manipulate abstract artifacts like 
variables, arrays, and objects

¨ Yet at the hardware level, these data abstractions are realized by 
binary values stored in memory 

¨ In particular, following translation to machine language
¤ Abstract array processing and get/set operations on objects are reduced to 

reading and writing selected locations in memory
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The CPU is the centerpiece of the computer’s 
architecture

¨ The Central Processing Unit (CPU) is in charge of executing the 
instructions of the currently running program 

¨ Each instruction tells the CPU which computation to perform, which 
registers to access, and which instruction to fetch and execute next

¨ The CPU executes these tasks using three main elements: 
¤ An Arithmetic Logic Unit (ALU) 
¤ A set of registers, and 
¤ A control unit
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Arithmetic Logic Unit (ALU)

¨ The ALU chip is built to perform all the low-level arithmetic and logical 
operations featured by the computer

¨ A typical ALU can add two given values, compute their bitwise And, 
compare them for equality, and so on …
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How much functionality should be packed into the 
ALU is a design decision

¨ In general, any function not supported by the ALU can be realized 
later, using system software running on top of the hardware platform 

¨ The trade-off is simple: 
¤ Hardware implementations are typically more efficient but result in more 

expensive hardware
¤ While software implementations are inexpensive and less efficient
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Why we use registers                              [1/2]

¨ While performing computations, the CPU is often required to store 
interim values temporarily 

¨ In theory, we could have stored these values in the RAM, but this would 
entail long-distance trips between the CPU and the RAM
¤ The CPU and the RAM are two separate chips
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Why we use registers                              [2/2]

¨ Long distance trips between the CPU and RAM result in delays

¨ These delays would frustrate the CPU-resident ALU, which is an ultra-
fast combinational calculator

¨ The result will be a condition known as starvation
¤ Happens when a fast processor depends on a sluggish data store for 

supplying its inputs and consuming its outputs
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To avert starvation and boost performance 

¨ CPUs are equipped with a small set of high-speed (and relatively 
expensive) registers, acting as the processor’s immediate memory

¨ These registers serve various purposes: 
¤ Data registers store interim values
¤ Address registers store values that are used to address the RAM 
¤ The program counter stores the address of the instruction that should be 

fetched and executed next
¤ The instruction register stores the current instruction
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Modern Computer from First Principles. 2nd Edition. ISBN-10/ ISBN-13: 0262539802 
/ 978-0262539807. MIT Press. [Chapter 5] 

¨ Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft 
Better Code. ISBN-10/ ISBN-13 : 1593279701/ 978-1593279707. No Starch 
Press.  [Chapter 5]
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