
SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS250: FOUNDATIONS OF COMPUTER SYSTEMS
[COMPUTER ARCHITECTURE]

SHRIDEEP PALLICKARA

Computer Science
Colorado State University

The Stored Program Concept
A limited repertoire you say?
 Well … it’s just like Lego
 Only with a surfeit of pieces

Mix, match and combine in ways
 That are infinite
 Literally and metaphorically

All leading to a machine
 With limits
 constrained only by creativity

1

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.2

Frequently asked questions from the previous class
survey

¨ What do general purpose registers typically hold?

¨ How can programs function without knowing that there is a cache?
¨ If a program is updating variables that are currently in the cache,

does it write to the cache and main memory?

¨ When something is evicted from the cache is it saved in main memory?
¨ When something is evicted, what if it is needed soon after?

¨ If cache hit rates are high, why do we even need a big main memory?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.3

Topics covered in this lecture

¨ Caching
¤ Direct mapped
¤ Associative
¤ N-way associativity

¨ Stored Program Concept
¨ The von Neumann architecture

3

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.4

Generally, if a cache line is n bytes long

¨ It will hold n bytes from main memory that fall on an n-byte boundary

¨ In our example of 16-byte cache lines, a cache line holds blocks of 16
bytes whose addresses fall on 16-byte boundaries in main memory
¤ i.e., the least-significant 4 bits of the address of the first byte in the cache

line are always 0

… … 16-byte
cache line

8 KB with 512 16-byte cache lines

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CACHING BEHIND THE SCENES

5

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.6

Types of caches

¨ Direct mapped caches

¨ Fully associative caches
¨ N-way associative caches

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.7

A direct mapped cache is also known as a one-way
associative cache

¨ In a direct-mapped cache, a particular block of main memory is
always loaded into—mapped to—the exact same cache line

¨ This mapping is determined by a small number of bits in the data
block’s memory address

7

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.8

Direct-mapped Cache

31 13 12 4 3 0

… 16-byte
cache line

8 KB with 512 16-byte cache lines

9 bits (4 through 12) of the physical memory
address provide an index to select one of
the 512 cache lines within the cache (29=512)

bits 0 through 3 determine the
particular byte within the 16-
byte cache line

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.9

Problems with a direct mapped cache

¨ Two different memory addresses located on 8KB boundaries cannot
both appear simultaneously in the cache

¨ How many such addresses exist in our 32-bit system?
¤ 219 8KB blocks exist in our system
¤ 219 512 (29) blocks of 16-bytes (24) each

n 219. 29 . 24 = 232 (the size of the main memory in our example)

9

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.10

The ideal world: A fully associative cache

¨ The cache controller can place a block of bytes in any one of the
cache lines present in the cache memory

¨ While this is the most flexible cache system, the extra circuitry to
achieve full associativity is expensive and, worse, can slow down the
memory subsystem

¨ Most L1 and L2 caches are not fully associative for this reason

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.11

Trade-off space

¨ A fully associative cache is too complex, too slow, and too expensive
to implement

¨ But a direct-mapped cache is too inefficient

11

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.12

A compromise: the n-way associative cache

¨ In an n-way set associative cache, the cache is broken up into sets of n
cache lines

¨ The CPU determines the particular set to use based on
¤ Some subset of the memory address bits, just as in the direct-mapping

scheme, and …
¤ The cache controller uses a fully associative mapping algorithm to determine

which one of the n cache lines within the set to use

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.13

For example, an 8KB two-way set associative cache
subsystem with 16-byte cache lines [1/2]

¨ Organizes the cache into 256 cache-line sets with two cache lines
each

¨ Eight bits from the memory address determine which one of these 256
different sets will contain the data
¤ 28 = 256

¨ Once the cache-line set is determined, the cache controller maps the
block of bytes to one of the two cache lines within the set

13

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.14

For example, an 8KB two-way set associative cache
subsystem with 16-byte cache lines [2/2]

¨ This means two different memory addresses located on 8KB
boundaries (addresses having the same value in bits 4 through 11) can
both appear simultaneously in the cache

¨ However, a conflict will occur if you attempt to access a third memory
location at an address that is an even multiple of 8KB

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.15

An 8 KB two-way set associative cache subsystem
with 16-byte cache lines

31 12 11 4 3 0

… 16-byte
cache line

8 KB with 2-way set associative cache with 256 sets of
two (16-byte) cache lines each

The cache controller chooses one of two
different cache lines within the set 28=256

bits 0 through 3 determine the
particular byte within the 16-
byte cache line

A cache line set
comprising
two cache lines

Eight bits (11 through 4) provide index to select
one of 256 sets 28=256

15

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.16

What if we have a 4-way associative cache

¨ A four-way set associative cache puts four associative cache lines in
each cache-line set

¨ In our example, 8KB cache, a four-way set associative caching scheme
would have 128 cache-line sets with four cache lines each

¨ This would allow the cache to maintain up to four different blocks of
data without a conflict, each of which would map to the same cache
line in a direct-mapped cache

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.17

2-/4-way set associative vs direct mapped

¨ A 2- or 4-way set associative cache is
¤ Much better than a direct-mapped cache and
¤ Considerably less complex than a fully associative cache

17

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.18

Can we keep increasing the number of lines in each
cache-line set?

¨ The more cache lines we have in each cache-line set, the closer we
come to creating a fully associative cache
¤ With all the attendant problems of complexity and speed

¨ Most cache designs are direct-mapped, two-way set associative, or
four-way set associative
¤ The various members of the 80x86 family make use of all three

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

WHY (MAIN) MEMORY MATTERS…

19

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.20

An analogy: You at a government office

¨ Some interactions can be completed using your IDs/cards (in your
wallet), documents (in your backpack), and documents (at home)
¤ Items can be retrieved from the wallet in 2 seconds
¤ The bag needs to be searched, and it takes about 120 seconds to do so
¤ The trip home and back will take 36,000 seconds (or 10 hours)

¨ Average time to complete transaction if your wallet suffices 95% of
the time but the backpack comes into play 5% of time?
¤ 0.95 * (wallet_time) + 0.05 * (backpack_time)
¤ 0.95 * 2 + 0.05 * 120 = 7.9 seconds

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.21

An analogy: You at a government office

¨ Average time to complete transaction if your wallet suffices 95% of
the time but the backpack comes into play 4% of time and you need
to go home 1% of the time?
¤ 0.95 * (wallet_time) + 0.04 * (backpack_time) + 0.01 (home_trip)
¤ 0.95 * 2 + 0.04 * 120 + 0.01 * 36,000 = 505.9 seconds

21

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.22

Let’s make it a little more real

¨ Cache access: 2 ns
¨ Main memory access: 50 ns
¨ Disk access: 8 milliseconds [8,000,000 ns]
¨ 97% cache and 3% main memory

¤ 0.97 * 2 + 0.03 * 50 = 3.4 ns

¨ 95% cache and 5% main memory
¤ 0.95 * 2 + 0.05 * 50 = 4.4 ns

¨ 95% cache, 4% main memory, and 1% disk
¤ 0.95 * 2 + 0.04 * 50 + 0.01 * 8,000,000 = 80,003.9 ns

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT
PROGRAM “EXECUTION”

23

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.24

Etymology Tidbit: Program “execution”

¨ Execute
¤ Verb
¤ Carry out or put into affect a plan, order, or course of action

¨ Contrary to some lore
¤ No bits are actually “killed” when a program “executes”

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

STORED PROGRAM
CONCEPT

25

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.26

The Stored Program Concept [1/2]

¨ Compared to all the machines around us, the most remarkable feature
of the digital computer is its amazing versatility

¨ Here is a machine with a finite and fixed hardware that can perform
an infinite number of tasks
¤ From playing games to typesetting books to driving cars

¨ This remarkable versatility—a boon that we have come to take for
granted—is the fruit of a brilliant early idea called the stored
program concept

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.27

The Stored Program Concept [2/2]

¨ Formulated independently by several scientists and engineers in the
1930s

¨ The stored program concept is still considered the most profound
invention in, if not the very foundation of, modern computer science.

27

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.28

The Stored Program Concept: Like many scientific
breakthroughs, the basic idea is simple

¨ The computer is based on a fixed hardware platform capable of
executing a fixed repertoire of simple instructions

¨ At the same time, these instructions can be combined like building
blocks, yielding arbitrarily sophisticated programs

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.29

Moreover, the logic of these programs is not
embedded in the hardware

¨ As was customary in mechanical computers predating 1930

¨ Instead, the program’s code is temporarily stored in the computer’s
memory, like data
¤ Becoming what is known as software

29

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.30

Since the computer’s operation manifests itself to the
user through the currently executing software …

¨ The same hardware platform can be made to behave completely
differently each time it is loaded with a different program

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.31

The stored program concept in models of computing

¨ The stored program concept is the key element of both abstract and
practical computer models
¤ Notably the Turing machine (1936) and the von Neumann machine (1945)

¨ The Turing machine is an abstract artifact describing a deceptively
simple computer
¤ Is used mainly in theoretical computer science for analyzing the logical

foundations of computation

¨ In contrast, the von Neumann machine is a practical model that
informs the construction of almost all computer platforms today

31

COMPUTER SCIENCE DEPARTMENT

THE VON NEUMANN ARCHITECTURE

Make everything as simple as possible, but not simpler.
—Albert Einstein (1879–1955)

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.33

The von Neumann architecture

¨ The von Neumann architecture is based on a Central Processing Unit
(CPU)
¤ Interacting with a memory device
¤ Receiving data from some input device, and
¤ Emitting data to some output device

¨ At the heart of this architecture lies the stored program concept:
¤ The computer’s memory stores not only the data that the computer manipulates
¤ But also, the instructions that tell the computer what to do

33

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.34

A generic von Neumann computer architecture

Instructions

Data

CPU

A
LU

…

Registers

Output
Input

Memory

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.35

The computer’s Memory can be discussed from both
physical and logical perspectives

¨ Physically, the memory is a linear sequence of addressable bytes,
each having a unique address and a value

¨ Logically, this address space serves two purposes: storing data and
storing instructions
¤ Both the “instruction words” and the “data words” are implemented exactly

the same way—as sequences of bits

35

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.36

Instruction Memory [1/2]

¨ Before a high-level program can be executed on a target computer, it
must first be translated into the machine language of the target
computer

¨ Each high-level statement is translated into one or more low-level
instructions
¤ Written as binary values to a file called the binary, or executable, version

of the program

¨ Before running a program:
¤ First load its binary version from a mass storage device, and
¤ Serialize its instructions into the computer’s instruction memory

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.37

Instruction Memory [2/2]

¨ From the pure focus of computer architecture, how a program is
loaded into the computer’s memory is considered an external issue

¨ What’s important is that when the CPU is called upon to execute a
program
¤ The program’s code will already reside in the computer’s memory

37

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.38

Data Memory

¨ High-level programs are designed to manipulate abstract artifacts like
variables, arrays, and objects

¨ Yet at the hardware level, these data abstractions are realized by
binary values stored in memory

¨ In particular, following translation to machine language
¤ Abstract array processing and get/set operations on objects are reduced to

reading and writing selected locations in memory

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CPU

39

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.40

The CPU is the centerpiece of the computer’s
architecture

¨ The Central Processing Unit (CPU) is in charge of executing the
instructions of the currently running program

¨ Each instruction tells the CPU which computation to perform, which
registers to access, and which instruction to fetch and execute next

¨ The CPU executes these tasks using three main elements:
¤ An Arithmetic Logic Unit (ALU)
¤ A set of registers, and
¤ A control unit

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.41

Arithmetic Logic Unit (ALU)

¨ The ALU chip is built to perform all the low-level arithmetic and logical
operations featured by the computer

¨ A typical ALU can add two given values, compute their bitwise And,
compare them for equality, and so on …

41

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.42

How much functionality should be packed into the
ALU is a design decision

¨ In general, any function not supported by the ALU can be realized
later, using system software running on top of the hardware platform

¨ The trade-off is simple:
¤ Hardware implementations are typically more efficient but result in more

expensive hardware
¤ While software implementations are inexpensive and less efficient

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.43

Why we use registers [1/2]

¨ While performing computations, the CPU is often required to store
interim values temporarily

¨ In theory, we could have stored these values in the RAM, but this would
entail long-distance trips between the CPU and the RAM
¤ The CPU and the RAM are two separate chips

43

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.44

Why we use registers [2/2]

¨ Long distance trips between the CPU and RAM result in delays

¨ These delays would frustrate the CPU-resident ALU, which is an ultra-
fast combinational calculator

¨ The result will be a condition known as starvation
¤ Happens when a fast processor depends on a sluggish data store for

supplying its inputs and consuming its outputs

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L12.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.45

To avert starvation and boost performance

¨ CPUs are equipped with a small set of high-speed (and relatively
expensive) registers, acting as the processor’s immediate memory

¨ These registers serve various purposes:
¤ Data registers store interim values
¤ Address registers store values that are used to address the RAM
¤ The program counter stores the address of the instruction that should be

fetched and executed next
¤ The instruction register stores the current instruction

45

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L12.46

The contents of this slide-set are based on the
following references
¨ Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a

Modern Computer from First Principles. 2nd Edition. ISBN-10/ ISBN-13: 0262539802
/ 978-0262539807. MIT Press. [Chapter 5]

¨ Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft
Better Code. ISBN-10/ ISBN-13 : 1593279701/ 978-1593279707. No Starch
Press. [Chapter 5]

¨ Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine
2nd Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 11]

46

