
SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
[COMPUTER ARCHITECTURE]

SHRIDEEP PALLICKARA

Computer Science
Colorado State University

Strings to Bits
To execute
 Strings of code must
 Embark on a journey

That transforms and re-expresses
 their semantics
 Using opcodes in binary

A few lines of high-level code
 Gets amplified into long sequences of
 Ones and Zeros

Braided tightly together
 so that the story
 And what must be done
 stays the same

1

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.2

Frequently asked questions from the previous class
survey

¨ Placements of cache lines in fully associative caches?

¨ When a cache line is not “dirty”, how is it evicted?
¨ Using virtual memory: performance implications?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.3

Topics covered in this lecture

¨ Bus architectures

¨ Memory mapped I/O
¨ Layering & abstractions

¨ Machine Language

3

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.4

A generic von Neumann computer architecture

Instructions

Data

CPU

A
LU

…

Registers

Output
Input

Memory

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CPU

5

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.6

The CPU is the centerpiece of the computer’s
architecture

¨ The Central Processing Unit (CPU) is in charge of executing the
instructions of the currently running program

¨ Each instruction tells the CPU which computation to perform, which
registers to access, and which instruction to fetch and execute next

¨ The CPU executes these tasks using three main elements:
¤ An Arithmetic Logic Unit (ALU)
¤ A set of registers, and
¤ A control unit

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.7

Arithmetic Logic Unit (ALU)

¨ The ALU chip is built to perform all the low-level arithmetic and logical
operations featured by the computer

¨ A typical ALU can add two given values, compute their bitwise And,
compare them for equality, and so on …

7

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.8

How much functionality should be packed into the
ALU is a design decision

¨ In general, any function not supported by the ALU can be realized
later, using system software running on top of the hardware platform

¨ The trade-off is simple:
¤ Hardware implementations are typically more efficient but result in more

expensive hardware
¤ While software implementations are inexpensive and less efficient

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.9

Why we use registers [1/2]

¨ While performing computations, the CPU is often required to store
interim values temporarily

¨ In theory, we could have stored these values in the RAM, but this would
entail long-distance trips between the CPU and the RAM
¤ The CPU and the RAM are two separate chips

9

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.10

Why we use registers [2/2]

¨ Long distance trips between the CPU and RAM result in delays

¨ These delays would frustrate the CPU-resident ALU, which is an ultra-
fast combinational calculator

¨ The result will be a condition known as starvation
¤ Happens when a fast processor depends on a sluggish data store for

supplying its inputs and consuming its outputs

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.11

To avert starvation and boost performance

¨ CPUs are equipped with a small set of high-speed (and relatively
expensive) registers, acting as the processor’s immediate memory

¨ These registers serve various purposes:
¤ Data registers store interim values
¤ Address registers store values that are used to address the RAM
¤ The program counter stores the address of the instruction that should be

fetched and executed next
¤ The instruction register stores the current instruction

11

COMPUTER SCIENCE DEPARTMENT

CONTROL, FETCH & EXECUTE

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.13

Control

¨ A computer instruction is a structured package of agreed-upon micro-
codes
¤ Sequences of one or more bits that signal to different circuitry what to do

¨ Thus, before an instruction can be executed, it must first be decoded
into its micro-codes

¨ Next, each micro-code is routed to its designated hardware circuitry
(ALU, registers) within the CPU
¤ Where it tells the device how to partake in the overall instruction execution

13

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.14

Fetch-Execute

¨ In each step (cycle) of the program’s execution:
¤ The CPU fetches a binary machine instruction from the instruction memory,
¤ Decodes it, and
¤ Executes it

¨ As a side effect of the instruction’s execution, the CPU also figures out
which instruction to fetch and execute next

¨ This repetitive process is sometimes referred to as the fetch-execute
cycle

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.15

CPU trends

¨ Multiprocessor systems with multiple CPUs debuted in the 1980s to get
higher performance than could be achieved with a single CPU

¨ As it turns out, though, it’s not that easy

¨ Dividing up a single program so that it can be parallelized to make
use of multiple CPUs is an unsolved problem in the general case
¤ Although it works well for several classes of problems

15

COMPUTER SCIENCE DEPARTMENT

BUS COMMUNICATIONS

Some folks like to get away
Take a holiday from the neighbourhood
Hop a flight to Miami Beach
Or to Hollywood
But I'm taking a Greyhound
On the Hudson River Line
I'm in a New York state of mind

Billy Joel, New York State Of Mind

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.17

A bus is a hardware communication system used by
computer components

¨ In the early days of computers, a bus was simply a set of parallel
wires, each carrying an electrical signal
¤ This allowed multiple bits of data to be transferred in parallel; the voltage

on each wire represented a single bit

¨ Today’s bus designs aren’t always that simple, but the intent is similar

17

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.18

There are 3 common bus types used in communication
between the CPU, memory, and I/O devices [1/2]

¨ An address bus selects the memory address that the CPU wishes to
access
¤ For example, if a program wishes to write to address 0x2FE, the CPU writes

0x2FE to the address bus

¨ The data bus transmits a value read from (or to be written to) memory
¤ If the CPU is reading data from memory, that value is read from the data bus
¤ If the CPU wishes to write 25 to memory, then 25 is written to the data bus

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.19

There are 3 common bus types used in communication
between the CPU, memory, and I/O devices [2/2]

¨ A control bus manages the operations happening over the other two
buses
¤ For e.g., the CPU uses the control bus to indicate that a write operation will

occur

¤ Or the control bus can carry a signal indicating the status of an operation

19

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.20

Bus Interactions: Example

CPU Main
Memory

Address Bus

Control Bus

0x003AFB4

read

Data Bus
84

The CPU requests a read of the value at memory
location 0x003AFB4 which returns the value 84

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.21

A simple bus-based structure

CPU
Graphics
Adapter

Disk
Controller

USB
Controller

Memory

{Disk 1, Disk 2}
{Mouse, Keyboard,
Printer} {Monitor}

Bus

21

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.22

Limitations of the bus structure from the earlier slide

¨ As processors and memories got faster
¤ Ability of a single bus to handle all traffic strained considerably

¨ Result?
¤ Additional buses were added
¤ For faster I/O devices and CPU-memory traffic

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.23

What a modern bus architecture looks like

Level 2
Cache

CPU PCI
Bridge

Main
Memory

SCSI USB
ISA

Bridge

IDE
Disk Graphics

Adaptor

Cache
bus

Local
bus Memory bus

PCI Bus

ISA Bus

Modem
Sound
Card

Printer

IDE
Bus

ISA: Industry Standard
 Architecture
PCI: Peripheral Component
 Interconnect

23

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.24

There are two main BUS standards

¨ Original IBM PC ISA (Industry Standard Architecture)

¨ PCI (Peripheral Component Interconnect)
¤ From Intel

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.25

The IBM PC ISA bus

¨ Runs at 8.33 MHz

¨ Transfers 2 bytes at once
¨ Maximum speed = 16.67 MB/sec

¨ Included for backward compatibility
¤ Older and slower I/O cards

25

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.26

The PCI bus

¨ Can run at 66 MHz

¨ Transfer 8 bytes at once

¨ Data transfer rate: 528 MB/sec

¨ Most high-speed I/O devices use PCI

¨ Newer computers have an updated version of PCI
¤ PCI Express

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.27

Other specialized buses:
IDE (Integrated Drive Electronics) bus

¨ For attaching peripheral devices
¤ CD-ROMs and Disks

¨ Grew out of the disk controller interface

27

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.28

Other specialized buses:
USB (Universal Serial Bus)

¨ Attach slow I/O devices to the computer
¤ Keyboard, mouse etc

¨ Uses a small 4-wire connector
¤ Two supply electrical power to the USB devices

¨ Centralized bus
¤ Root device polls I/O devices every millisecond

n Check if they have any traffic

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.29

Some more information about USB

¨ All USB devices share a single USB device driver
¤ No need to install a driver for each device
¤ Can be added to computer without need to reboot

¨ USB 1.0 had a transfer rate of 1.5 MB/sec
¨ USB 2.0 went up to 60 MB/sec
¨ USB 3.0

¤ Specification ready on 17 November 2008
¤ Theoretical signaling rate: 600 MB/sec (4.8 Gbps)
¤ USB 3.1: Jan 2013 goes up to 10 Gbps
¤ US 3.2 released in September 2017 transfer modes 10 and 20 Gbps

¨ USB-C 24 pins: 16 for data transfer, 4 for power, and 4 ground

29

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.30

Other buses

¨ SCSI (Small Computer System Interface)
¤ High performance bus
¤ For devices that need high bandwidth

n Fast disks, scanners
¤ Up to 320 MB/sec

¨ IEEE 1394
¤ Sometimes called FireWire (used by Apple)
¤ Transfer speeds of up to 100 MB/sec

n Camcorders and similar multimedia devices
¤ No need for a central controller (unlike USB)

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.31

Typical PC architecture

Northbridge

Southbridge

FSB FSB

DRAM Bank 0

DRAM Bank 1

DRAM Bank 2

DRAM Bank 3

DRAM Memory (2GHz, 16 GB, 30GB/s)

SATA (300 MB/sec)Storage
Ethernet

FS
B

Core 1 Core 2

Core 3 Core 4

PCI-E Bus (5GB/sec)

GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

FS
B

31

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.32

Typical desktop CPU/GPU layout

¨ All GPU devices are connected to the processor via the PCI-E bus
¤ To get data from the processor, we need to go through the Northbridge

device over the slow FSB (front-side bus)

¨ The FSB can run anything up to 1600 MHz clock rate, although in
many designs it is much slower

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.33

The Northbridge/Southbridge chipsets

¨ The Northbridge chipset deals with all the high-speed components
¤ Memory, CPU, PCI-E bus connections, etc.

¨ The Southbridge chip deals with the slower devices such as hard disks,
USB, keyboard, network connections, etc.

¨ Since the 2010s, functions performed by northbridges are now often
incorporated into other components
¤ Die shrink and improved transistor density allow for chipset integration
¤ Notably in 2019, both Intel and AMD released chipsets where all

northbridge functions were integrated into the CPU

33

COMPUTER SCIENCE DEPARTMENT

MEMORY MAPPED I/O

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.35

Computers interact with their external environments
using a great variety of I/O devices

¨ Examples include screens, keyboards, storage devices, printers,
microphones, speakers, network interface cards, and so on

¨ Not to mention the bewildering array of sensors and activators
¤ Embedded in automobiles, cameras, hearing aids, alarm systems, and all the

gadgets around us

35

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.36

There are two reasons why we don’t concern
ourselves with these I/O devices

¨ Every one of them represents a unique piece of machinery, requiring a
unique knowledge of engineering

¨ For that very same reason, computer scientists have devised clever
schemes
¤ For abstracting away this complexity and
¤ Making all I/O devices look exactly the same to the computer

¨ The key element in this abstraction is called memory-mapped I/O

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.37

Memory mapped I/O

¨ The basic idea is to create a binary emulation of the I/O device
¤ Making it appear to the CPU as if it were a regular linear memory

segment

¨ How?
¤ By allocating, for each I/O device, a designated area in the computer’s

memory that acts as its memory map

37

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.38

Memory mapped I/O: Examples

¨ In the case of an input device like a keyboard, the memory map is
made to continuously reflect the physical state of the device:
¤ When the user presses a key on the keyboard, a binary code representing

that key appears in the keyboard’s memory map

¨ In the case of an output device like a screen, the screen is made to
continuously reflect the state of its designated memory map
¤ When we write a bit in the screen’s memory map, a respective pixel is

turned on or off on the screen

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.39

How?

¨ The I/O devices and the memory maps are refreshed, or synchronized,
many times per second
¤ So, the response time from the user’s perspective appears to be instantaneous

¨ Programmatically, the key implication is that low-level computer
programs can access any I/O device
¤ By manipulating its designated memory map

39

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.40

The memory map convention is based on several
agreed-upon contracts [1/2]

¨ The data that drives each I/O device must be serialized, or mapped,
onto the computer’s memory
¤ Hence the name memory map

¨ For example, the screen, which is a two-dimensional grid of pixels, is
mapped on a one-dimensional block of fixed-size memory

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.41

The memory map convention is based on several
agreed-upon contracts [2/2]

¨ Each I/O device is required to support an agreed-upon interaction
protocol
¤ So that programs will be able to access it in a predictable manner
¤ For example, it should be decided which binary codes should represent

which keys on the keyboard

¨ Given the multitude of computer platforms, I/O devices, and different
hardware and software vendors
¤ Agreed-upon, industry-wide standards play a crucial role in realizing these

low-level interaction contracts

41

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.42

The practical implications of memory-mapped I/O
are significant

¨ The computer system is totally independent of the number, nature, or
make of the I/O devices that interact, or may interact, with it

¨ Whenever we want to connect a new I/O device to the computer, all
we have to do is allocate to it a new memory map and take note of
the map’s base address
¤ These one-time configurations are carried out by installer programs

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.43

What else?

¨ Another necessary element is a device driver program, which is added
to the computer’s operating system

¨ The device driver program bridges the gap
¤ Between the I/O device’s memory map data and the way this data is actually

rendered on, or generated by, the physical I/O device

43

COMPUTER SCIENCE DEPARTMENT LAYERING & ABSTRACTIONS
44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.45

The journey from high level to machine level [1/2]

¨ All high-level languages rely on a suite of translators for reducing
high-level code all the way down to machine-level instructions

¨ The translators could be
¤ Compiler/ interpreter
¤ Virtual machine
¤ Assembler

45

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.46

The journey from high level to machine level [2/2]

¨ Some high-level languages are interpreted rather than compiled, and
some don’t use a virtual machine
¤ But the big picture is essentially the same

¨ This observation is a manifestation of a fundamental computer science
principle, known as the Church-Turing conjecture
¤ At its core, all computers are essentially equivalent

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.24

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.47

Abstractions vs Implementations [1/2]

¨ The cognitive ability to “divide and conquer” a complex system into
manageable modules is key

¨ Empowered by yet another cognitive gift:
¤ Our ability to discern between the abstraction and the implementation of

each module

47

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.48

Abstractions vs Implementations [2/2]

¨ In computer science, we take these words concretely

¨ Abstraction describes what the module does

¨ Implementation describes how it does it

¨ With this distinction in mind, here is the most important rule in system
design:
¤ When using any module as a building block you are to focus exclusively on

the module’s abstraction, ignoring its implementation details

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.25

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.49

To recap …

¨ Whenever your implementation uses a lower-level hardware or
software module
¤ You are to treat this module as an off-the-shelf, black box abstraction

49

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.50

All you need is the documentation of the module’s
interface, describing what it can do, and off you go

¨ You are to pay no attention whatsoever to how the module performs
what its interface advertises

¨ This abstraction-implementation paradigm helps developers manage
complexity and maintain sanity:
¤ By dividing an overwhelming system into well-defined modules, we create

manageable chunks of implementation work
n And localize error detection and correction

¤ This is the most important design principle in hardware and software
construction projects

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L13.26

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.51

The abstractions are often built layer upon layer

¨ Resulting in higher and higher levels of functionality

¨ If the system architect designs a good set of modules, the
implementation work will flow like clear water
¤ If the design is slipshod, the implementation will be doomed!

¨ Modular design is an acquired art
¤ Honed by seeing and implementing many well-designed abstractions

51

ARCHITECTURECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L13.52

The contents of this slide-set are based on the
following references
¨ Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a

Modern Computer from First Principles. 2nd Edition. ISBN-10/ ISBN-13: 0262539802
/ 978-0262539807. MIT Press. [Preface, Chapter 4-5]

52

