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The end of the party
Have you a plodding program?
     Just you wait and soon it will sprint

Miniaturization, Dennard’s scaling
     working in tandem          good times
     doubling densities     constant power
 Moore’s Law            faster clocks, magical speedups

Alas the party’s come to a crashing end
     In the wee hours of the millennium
Running headlong into quantum effects
    Laid waste by heat 
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Frequently asked questions from the previous class 
survey

¨ Memory mapped I/O
¤ If I plug-in 10,000 keyboard to 1 computer, could I run out of memory
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Topics covered in this lecture

¨ Assembly language

¨ Instruction set architectures
¨ Why miniaturization matters in hardware

¨ Moore’s Law
¨ Dennard’s scaling
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MACHINE LANGUAGE

Works of imagination should be written in very plain language; the 
more purely imaginative they are, the more necessary it is to be plain. 

—Samuel Taylor Coleridge (1772–1834)
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The simplest program out there

/** The simplest program out there! */

public class HelloWorld {

    /** This does not even take an argument */
    public static void main(String[] args) {

        System.out.println("Hello World");
    }

}
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What does it take to actually run this?      [1/2]

¨ Let’s look under the hood

¨ For starters, note that the program is nothing more than a sequence of 
plain characters, stored in a text file

¨ This abstraction is a complete mystery for the computer, which 
understands only instructions written in machine language
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What does it take to actually run this?      [2/2]

¨ The first thing we must do is parse the string of characters of which the 
high-level code is made, uncover its semantics—figure out what the 
program seeks to do
¤ And then generate low-level code that reexpresses this semantics using the 

machine language of the target computer

¨ The result of this elaborate translation process, known as compilation, 
will be an executable sequence of machine language instructions
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Machine language is also an abstraction

¨ An agreed upon set of binary codes

¨ To make this abstraction concrete
¤ It must be realized by some hardware architecture
¤ And this architecture, in turn, is implemented by a certain set of chips —

registers, memory units, adders, and so on 
¤ Now, every one of these hardware devices is constructed from lower-level, 

elementary logic gates
¤ And these gates, in turn, can be built from primitive gates like Nand and Nor

n These primitive gates are very low in the hierarchy, but they, too, are made of 
several switching devices, typically implemented by transistors
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But this is so much easier on your computer

¨ On your computer, compiling and running programs is much easier
¤ All you have to do is click this icon or write that command!

¨ Indeed, a modern computer system is like a submerged iceberg
¤ Most people get to see only the top
¤ Knowledge of computing systems is often sketchy and superficial
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A machine language is an agreed-upon formalism 
designed to code machine instructions

¨ Using these instructions, we can instruct the computer’s processor to:
¤ Perform arithmetic and logical operations
¤ Read and write values from and to the computer’s memory 
¤ Test Boolean conditions
¤ Decide which instruction to fetch and execute next
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Design goals in high-level and machine languages 
differ

¨ Design goals in high-level languages
¤ Cross-platform compatibility and power of expression

¨ Machine languages are designed to effect direct execution in, and 
total control of, a specific hardware platform 
¤ Of course, generality, elegance, and power of expression are still desired 
¤ But only to the extent that they support the basic requirement of direct and 

efficient execution in hardware
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Machine language is the most profound interface in 
the computer enterprise

¨ The fine line where hardware meets software

¨ The point where the abstract designs of humans, as manifested in high-
level programs, are finally reduced to physical operations performed 
in silicon
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A machine language is both a programming artifact 
and an integral part of the hardware platform

¨ Just as we say that the machine language is designed to control a 
particular hardware platform

¨ We can say that the hardware platform is designed to execute
instructions written in a particular machine language
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Who writes machine language programs? 

¨ Even the most sophisticated software systems are, at bottom, streams 
of simple instructions
¤ Each specifying a primitive operation on the underlying hardware

¨ It should be noted that machine language programs are rarely written 
by humans

¨ Rather, they are typically written by compilers

¨ And a compiler — being an automaton — can optionally bypass the 
symbolic instructions and generate binary machine code directly
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BINARY & SYMBOLIC

What’s in a name? That which we call a rose by any other 
name would smell as sweet. 

—Shakespeare, Romeo and Juliet
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Writing machine language programs

¨ Machine language programs can be written in two alternative, but 
equivalent, ways
¤ Binary 
¤ Symbolic
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Machine Language: Binary vs Symbolic

¨ Consider the abstract operation “set R1 to the value of R1 + R2”

¨ Language designers, can decide to represent 
¤ The addition operation using the 6-bit code 101011, 
¤ Registers R1 and R2 using the codes 00001 and 00010, respectively 

¨ Assembling these codes left to right:
¤ The 16-bit instruction 1010110001000001 can be used as the binary 

version of “set R1 to the value of R1 + R2”

17

MACHINE LANGUAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L14.18

In the early days of computer systems, computers 
were programmed manually

¨ When proto-programmers wanted to issue the instruction “set R1 to the 
value of R1 + R2”
¤ They pushed up and down mechanical switches that stored a binary code 

like 1010110001000001 in the computer’s instruction memory

¨ And if the program was a hundred instructions long?
¤ They had to go through this ordeal a hundred times

¨ Of course, debugging such programs was a perfect nightmare
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Symbolic codes to the rescue

¨ This led programmers to invent and use symbolic codes 
¤ Convenient way for documenting and debugging programs on paper, before

entering them into the computer

¨ For example, the symbolic format add R2,R1 could be chosen 
¤ For representing the semantics “set R1 to the value of R1 + R2” and the 

binary instruction 1010110001000001 
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It didn’t take long before several people hit on the 
same idea

¨ Symbols like R, 1, 2, and + can also be represented using agreed-upon 
binary codes

¨ Why not use symbolic instructions for writing programs?
¤ And then use another program —a translator— for translating the symbolic 

instructions into executable binary code? 

¨ This innovation liberated programmers from the tedium of writing binary 
code
¤ Paving the way for the subsequent onslaught of high-level programming 

languages
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Symbolic machine languages

¨ Symbolic machine languages are called assembly languages

¨ The programs that translate them into binary code are called 
assemblers
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High-level vs Assembly languages                             

¨ Syntax of high-level languages 
¤ Portable and hardware independent

¨ The syntax of an assembly language? 
¤ Tightly related to the low-level details of the target hardware

n The available ALU operations, number and type of registers, memory size, and so 
on

22



SLIDES CREATED BY: SHRIDEEP PALLICKARA L14.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MACHINE LANGUAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L14.23

But there is so much diversity in hardware

¨ Since different computers vary greatly in terms of any one of these 
parameters, there is a Tower of Babel of machine languages
¤ Each with its obscure syntax
¤ Each designed to control a particular family of CPUs

¨ Irrespective of this variety, though, all machine languages are 
theoretically equivalent
¤ All of them support similar sets of generic tasks
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Symbolic language & the Assembler         [1/2]

¨ The symbolic version includes all sorts of things that humans are fond 
of seeing in computer programs
¤ Comments, white space, indentation, symbolic instructions, and symbolic 

references

¨ None of these embellishments concern computers, which understand 
one thing only: bits
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Symbolic language & the Assembler         [2/2]

¨ The agent that bridges the gap between the symbolic code convenient 
for humans and the binary code understood by the computer is the 
assembler

¨ The assembler takes as input a stream of assembly instructions and 
generates as output a stream of translated binary instructions
¤ The resulting code can be loaded as is into the computer memory and 

executed
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INSTRUCTION SET ARCHITECTURES
If everything seems under control, you’re just not going fast enough. 

—Mario Andretti (b. 1940), race car champion

26



SLIDES CREATED BY: SHRIDEEP PALLICKARA L14.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MACHINE LANGUAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L14.27

CPU instructions

¨ Although all CPUs implement arithmetic instructions, the specific 
instructions available on different processors vary

¨ Some instructions that exist for one type of CPU simply don’t exist on 
other types of CPUs

¨ Even instructions that do exist on nearly all CPUs aren’t implemented 
in the same way
¤ For example, the specific binary sequence used to mean “add two numbers” 

is not the same across processor types
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A family of CPUs that use the same instructions are 
said to share an instruction set architecture (ISA)

¨ An ISA is also a model of how a CPU works

¨ Software that’s built for a certain ISA works on any CPU that 
implements that ISA
¤ It’s possible for multiple processor models, even those from different 

manufacturers, to implement the same architecture
¤ Such processors may work very differently internally, but by adhering to 

the same ISA, they can run the same software
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Today, there are two prevalent instruction set 
architectures

¨ x86
¤ Personal computers, desktops, and servers

¨ ARM
¤ Hand-held devices
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The majority of desktop computers, laptops, and 
servers use x86 CPUs
¨ The term x86 refers to a set of related architectures 

¨ The name comes from Intel Corporation’s naming convention for its 
processors (each ending in 86) 
¤ Beginning with the 8086 released in 1978, and continuing with the 80186, 80286, 

80386, and 80486
¤ After the 80486 (or more simply the 486), Intel began branding its CPUs with 

names such as Pentium and Celeron
n These processors are still x86 CPUs despite the name change 

¨ Other companies besides Intel also produce x86 processors
¤ Most notably Advanced Micro Devices, Inc. (AMD) 
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Over time, new instructions have been added to the 
x86 architecture

¨ But each generation has tried to retain backward compatibility

¨ This generally means that software developed for an older x86 CPU 
runs on a newer x86 CPU
¤ But software built for a newer x86 CPU that takes advantage of new x86 

instructions won’t be able to run on older x86 CPUs 
n Older x86 CPUs don’t understand the new instructions: no forward compatibility
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Generations of the x86 architecture

¨ The x86 architecture includes three major generations of processors: 
¤ 16-bit
¤ 32-bit
¤ 64-bit 
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What do we mean when we say that a CPU is a 16-
bit, 32-bit, or 64-bit processor?

¨ The number of bits associated with a processor refers to the number of 
bits it can deal with at a time
¤ Also known as its bitness or word size

¨ So, a 32-bit CPU can operate on values that are 32 bits in length 
¤ More specifically, this means that the computer architecture has 32-bit 

registers, a 32-bit address bus, or a 32-bit data bus
¤ Or all three may be 32-bit
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Bitness

¨ The original 8086 processor, released in 1978, was a 16-bit processor
¤ Intel’s subsequent x86 processors were also 16-bit until the 80386 processor

¨ The 80386 released in 1985, brought with it a new 32-bit version of 
the x86 architecture
¤ This 32-bit version of x86 is sometimes called IA-32

¨ Thanks to backward compatibility, modern x86 processors still fully 
support IA-32
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Interestingly, it was AMD, and not Intel, that brought 
x86 into the 64-bit era

¨ In the late 1990s, Intel’s 64-bit focus was on a new CPU architecture 
called IA-64 or Itanium
¤ This was not an x86 ISA, and ended up as a niche product for servers

¨ With Intel focused on Itanium, AMD seized the opportunity to extend 
the x86 architecture
¤ In 2003, AMD released the Opteron processor, the first 64-bit x86 CPU
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AMD’s architecture was originally known as AMD64

¨ Later Intel adopted this architecture and called its implementation Intel 
64

¨ The two implementations are mostly functionally identical

¨ Today 64-bit x86 is generally referred to as x64 or x86-64
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Although x86 rules the PC/server world, ARM 
processors command the realm of mobile devices

¨ Multiple companies manufacture ARM processors

¨ A company called ARM Holdings develops the ARM architecture and 
licenses their designs to other companies to implement
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It’s common for ARM CPUs to be used in system-on-
chip (SoC) designs

¨ Where a single integrated circuit contains not only a CPU, but also 
memory and other hardware 

¨ The ARM architecture originated in the 1980s as a 32-bit ISA

¨ A 64-bit version of the ARM architecture was introduced in 2011
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ARM processors are favored in mobile devices

¨ Due to their reduced power consumption and lower cost as 
compared to x86 processors

¨ ARM processors can be used in PCs as well
¤ But that market largely remains focused on x86, to retain backward 

compatibility with existing x86 PC software
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ARMs foray into desktops and laptops

¨ Started in earnest in 2020 when Apple announced their intention to 
move macOS computers from x86 to ARM CPUs

¨ The first line of computers, MacBook Pros were released with this ARM-
based SoC design in 2021

¨ Includes mechanisms to work with executables that use legacy x86-64 
and x86-32 codes
¤ Rosetta software to use apps built for a Mac with an Intel processor
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WHY MINIATURIZATION MATTERS

A person's a person, no matter how small.
― Dr. Seuss, Horton Hears a Who!

42



SLIDES CREATED BY: SHRIDEEP PALLICKARA L14.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MACHINE LANGUAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L14.43

Why Miniaturization Matters in Hardware: 
An analogy

¨ Imagine you have to drive your kids to and from school, which is 10 
miles away, at an average speed of 40 miles per hour

¨ The combination of distance and speed means that only two round 
trips per hour are possible

¨ You can’t complete the trip more quickly 
¤ Without either driving faster or moving closer to school
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Modern computers drive electrons around instead of 
kids

¨ Electricity travels at the speed of light, which is about 300 million 
meters per second
¤ Except in the US, where it goes about ~186,000 miles/second or a billion 

feet per second

¨ Because we haven’t yet discovered a way around this physical 
limitation
¤ The only way we can minimize travel time in computers is to have the parts 

close together
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Miniaturization and clock speeds

¨ Computers today can have clock speeds around 4 GHz, which means 
they can do four billion things per second 

¨ Electricity only travels about 75 millimeters in a four-billionth of a 
second

¨ A typical CPU that measures about 18 millimeters on each side
¤ There’s just enough time to make two complete round trips across this CPU 

in four-billionths of a second 
¤ It follows that making things small permits higher performance
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Miniaturization: The energy angle             [1/2]

¨ When driving kids to and from school coffee alone is insufficient
¤ It takes energy to travel!

¨ Making things small reduces the amount of travel needed, which 
reduces the amount of energy needed
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Miniaturization: The energy angle             [2/2]

¨ Reduced energy requirements translates into lower power 
consumption and less heat generation
¤ Reduced heat keeps your phone from burning a hole in your pocket!

¨ This is one of the reasons why the history of computing devices has 
been characterized by efforts to make hardware smaller
¤ But making things very small introduces other problems
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Moore’s Law                                          [1/2]

¨ Empirical observation linked to gains from experience in production

¨ The number of transistors in a dense integrated circuit (IC) doubles 
about every two years
¤ For most of the last fifty years … equivalent to saying that computers did 

get twice as fast

¨ Not a law of physics
¤ An observation and projection of a historical trend
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Moore’s Law                                          [2/2]

¨ Nearly two decades since what has been called “the breakdown of 
Moore’s law” 
¤ And the switch to multicore processors instead of ever faster single chips

¨ But again, this is wrong! 
¤ Moore’s law has not broken down at all – transistor numbers are continuing 

to increase
¤ What has happened is that it is no longer possible to keep running these 

transistors at ever faster speeds
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DENNARD SCALING
& THE FREQUENCY WALL
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Dennard scaling

¨ Named after Robert Dennard 
¤ Led the IBM research team that first described this effect in a 1974 paper

¨ As transistors got smaller the power density was constant 
¤ Power use stays in proportion with area; both voltage and current scale 

(downward) with length

¤ If a transistor’s linear size reduced by 2?
n The power it used fell by 4!
n With voltage and current both halving
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Dennard’s Observations                           [1/3]

¨ With every technology generation, transistor dimensions could be 
scaled by −30% (0.7×)

¨ This has the following effects simultaneously:
¤ Chip area reduces by 50%
¤ To keep the electric field constant, the voltage, V, is reduced by 30% (0.7×)

n Voltage is field times length

¤ Circuit delays reduce by 30% (0.7×)
n Because time is length over velocity
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These in turn results in changes to capacitance and 
chosen frequency

¨ The 30% reduction in delay allows an increase in operating frequency
by about 40% (1.4×)
¤ Frequency varies with one over delay …. 1/0.7 ~ 1.4

¨ The 30% reduction in all distances and related 50% drop in area leads 
to a decrease in capacitance, C, by 30% (0.7×)

¨ Power consumption decreases by 50%, because active power is CV2f
¤ 0.7 x 0.72 x 1.4 ~ 0.5
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Dennard’s Observations: Takeaway

¨ In every technology generation:
¤ Area halves and … 
¤ Power consumption halves!

¨ In other words, if the transistor density doubles? 
¤ Power consumption stays the same with twice the number of transistors
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What has broken down is not the ability to etch 
smaller transistors 

¨ We are unable to drop the voltage and the current needed to 
operate reliably

¨ In the run-up to hitting this wall, the reduction in the size of the 
transistors ran slightly ahead
¤ We ended up getting to 3GHz a little faster than expected
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So what’s the problem?

¨ Static power losses have increased every more rapidly as a 
proportion of overall power supplied as voltages have dropped

¨ Notably, static power losses heat the chip
¤ Further increasing static power loss and threatening thermal runaway – and 

complete breakdown
n This is a vicious cycle not a virtuous one

57

MACHINE LANGUAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L14.58

Reasons for increased static power loss

¨ Complex quantum effects due to 
¤ Component sizes being reduced 
¤ Modifications to chemical composition of chips to handle miniaturizations

¨ There seems to be no way out! 
¤ “Moore’s law” … in the sense of ever faster chips, is dead
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Consequences of the breakdown on Dennard scaling

¨ Unable to increase clock frequencies significantly 

¨ Most CPU manufacturers focus on multicore processors to improve 
performance
¤ An increased core count benefits many workloads
¤ The increase in active switching elements from having multiple cores still 

results in increased overall power consumption
n Worsens CPU power dissipation issues
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The problems of dissipation persist to some extent in 
multicores as well

¨ Only a fraction of an integrated circuit can actually be active at any 
given point in time without violating power constraints

¨ The remaining (inactive) area is referred to as dark silicon
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The Harvard architecture

¨ Named after the Harvard Mark I computer a joint effort between IBM 
and Harvard
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Depiction of the architecture

¨ The only difference between them is the way the memory is arranged

Instructions

Data

CPU

A
LU

…

Registers

Output
Input
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Some comparison points

¨ All else being equal, the von Neumann architecture is slightly slower
¤ Because it can’t access instructions and data at the same time, since there’s 

only one memory bus

¨ The Harvard architecture gets around that but requires additional 
hardware for the second memory bus
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The contents of this slide-set are based on the 
following references
¨ Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a Modern Computer 

from First Principles. 2nd Edition. ISBN-10/ ISBN-13: 0262539802 / 978-0262539807. MIT Press. 
[Preface, Chapter 4-5]

¨ Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft Better Code. ISBN-
10/ ISBN-13 : 1593279701/ 978-1593279707. No Starch Press.  [Chapter 5]

¨ Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine 2nd Edition. 
ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 11]

¨ Matthew Justice. How Computers Really Work: A Hands-On Guide to the Inner Workings of the 
Machine. ISBN-10/ISBN-13 : 1718500661/ 978-1718500662. No Starch Press. 2020. [Chapter 7]

¨ Adrian McMenamin: https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-
scaling/

¨ https://en.wikipedia.org/wiki/Dennard_scaling

¨ https://en.wikipedia.org/wiki/Moore%27s_law

65


