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Write once, run anywhere?
Compile thy code
    To an abstract, virtual machine
    The VM code

Next  translate the VM code
     To the machine language
     Of the target platform

Viola    a code written once
    Running wherever
Without re-compiling
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Frequently asked questions from the previous class 
survey

¨ Are opcodes still being added?

¨ Are there ARM-based GPUs?
¨ NVIDIA and RTX: Step in the right direction?
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Topics covered in this lecture

¨ Software

¨ Virtual machines
¨ Stack machine
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SOFTWARE Any sufficiently advanced technology is indistinguishable 
from magic. 

—Arthur C. Clarke (1962)
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The magic in “Hello World”                     [1/2]

¨ The first magic that we take for granted is that a sequence characters, 
say, printString ("Hello World"), can cause the computer to 
actually display something on the screen

¨ How does the computer figure out what to do? And even if the 
computer knew what to do, how will it actually do it? 
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The magic in “Hello World”                     [2/2]

¨ The screen is a grid of pixels
¤ If we want to display “H” on the screen, we have to turn on and off a 

carefully selected subset of pixels

¨ Of course, this is just the beginning
¤ What about displaying this H legibly on screens that have different sizes 

and resolutions? 
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And beyond simple programs …

¨ What about dealing with while and for loops, arrays, objects, 
methods, classes?
¤ And all the other goodies that high-level programmers are trained to use 

without ever thinking about how they work?

¨ Indeed, the beauty of high-level programming languages is that they 
permit using them in a state of blissful ignorance
¤ This is true of well-designed abstractions in general 
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Application programmers and high-level languages

¨ Application programmers are encouraged to view the language as a 
black box abstraction
¤ Without paying any attention to how it is actually implemented

¨ All you need is a good tutorial, a few code examples, and off you go 
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Clearly though, at one point or another, someone 
must implement this language abstraction

¨ Someone must develop, once and for all, the ability …
¤ To efficiently compute square roots when the application programmer 

blissfully says sqrt(1764) 
¤ To elicit a number from the user 
¤ To find and carve out an available memory block when the programmer 

nonchalantly creates an object using new

¤ And to perform transparently all the other abstract services that programmers 
expect to get without ever thinking about them 

9

SOFTWARECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L15.10

So, who turns high-level programming into an 
advanced technology indistinguishable from magic?

¨ Those who develop compilers, virtual machines, and operating systems
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The journey from high-level code to machine 
language

¨ A high-level program is a symbolic abstraction that means nothing to 
the underlying hardware

¨ Before executing a program, the high-level code must be translated
into machine language

¨ This translation process is called compilation, and the program that 
carries it out is called a compiler

12



SLIDES CREATED BY: SHRIDEEP PALLICKARA L15.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L15.13

Writing high-level programs that can execute on any 
one of many host platforms is a daunting challenge

¨ One way to streamline this distributed, multi-vendor ecosystem (from a 
compilation perspective)?
¤ Base it on some overarching, agreed-upon virtual machine (VM) architecture

¨ Acting as a common, intermediate run-time environment
¤ The VM approach allows developers to write high-level programs that run 

almost as is on many different hardware platforms
n Each equipped with its own VM implementation
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Some languages, for example, Java and C#, employ 
an elegant two-tier compilation model              [1/2]

¨ First, the source program is translated into an interim, abstract VM code 
¤ Called bytecode in Java and Python and Intermediate Language in C#/.NET

¨ Next, using a completely separate and independent process, the VM code 
can be translated further into the machine language of any target 
hardware platform

¨ This modularity is at least one reason why Java became such a dominant 
programming language
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Some languages, for example, Java and C#, employ 
an elegant two-tier compilation model              [2/2]

¨ Taking a historical perspective

¨ Java can be viewed as a powerful object-oriented language whose two-
tier compilation model was the right thing in the right time
¤ Just as computers were evolving from a few predictable processor/OS 

platforms into a bewildering hodgepodge of networked PCs, mobile devices .. 
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VIRTUAL MACHINE

High thoughts need a high language. 
—Aristophanes (427–386 B.C.)
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Before a high-level program can run on a target 
computer

¨ It must be translated into the computer’s machine language 

¨ Traditionally, a separate compiler was developed specifically for any 
given pair of high-level language and low-level machine language

¨ Over the years, the reality of many high-level languages, on the one 
hand, and many processors and instruction sets, on the other led to 
¤ A proliferation of many different compilers, each depending on every detail 

of both its source and target languages
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One way to decouple this dependency

¨ Break the overall compilation process into two nearly separate stages

¨ In the first stage:
¤ The high-level code is parsed and translated into intermediate and abstract 

processing steps—steps that are neither high nor low

¨ In the second stage: 
¤ The intermediate steps are translated further into the low-level machine 

language of the target hardware

18



SLIDES CREATED BY: SHRIDEEP PALLICKARA L15.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L15.19

This decomposition is very appealing from a 
software engineering perspective

¨ The first translation stage depends only on the specifics of the source 
high-level language

¨ The second stage only on the specifics of the target low-level machine 
language
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Of course, the interface between the two translation 
stages needs careful thought

¨ The exact definition of the intermediate processing steps
¤ Must be carefully designed and optimized

¨ At some point in the evolution of program translation solutions 
¤ Compiler developers concluded that this intermediate interface is 

sufficiently important to merit its own definition 
n As a standalone language designed to run on an abstract machine

¤ Specifically, one can describe a virtual machine whose commands realize 
the intermediate processing steps into which high-level commands are 
translated

20



SLIDES CREATED BY: SHRIDEEP PALLICKARA L15.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L15.21

The compiler that was formerly a single monolithic 
program is now split

¨ Two separate and much simpler programs

¨ The first program:
¤ Still termed compiler, translates the high-level code into intermediate VM 

commands

¨ The second program, called VM translator
¤ Translates the VM commands further into the machine instructions of the 

target hardware platform
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Virtual Machine framework using Java as an 
example

Java
Program

VM code 
(bytecode)

Java
compiler

JVM Implementation
on this computer

JVM Implementation
on that computer

JVM Implementation
on this device

JVM Implementation
on that device
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The virtual machine framework entails many 
practical benefits

¨ When a vendor introduces a new digital device to the market 
¤ Say, a cell phone
¤ The vendor can develop for it a JVM implementation, known as JRE (Java 

Runtime Environment), with relative ease

¨ This client-side enabling infrastructure immediately endows the device 
with a huge base of available Java software
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And, in a world like .NET

¨ Where several high-level languages are made to compile into the 
same intermediate VM language
¤ Compilers for different languages can share the same VM back-end 
¤ Allowing usage of common software libraries and language interoperability
¤ E.g., C#, F#, VisualBasic
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The price paid for the elegance and power of the 
VM framework is reduced efficiency

¨ Naturally, a two-tier translation process results, ultimately, in 
generating machine code that is more verbose and cumbersome
¤ Than the code produced by direct compilation

¨ However, as processors become faster and VM implementations more 
optimized
¤ The degraded efficiency is hardly noticeable in most applications
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What about HPC applications?

¨ There will always be high-performance applications and embedded 
systems 

¨ These systems will continue to demand the efficient code generated by 
single-tier compilers of language like C and C++ 
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The design of an effective VM language seeks to 
strike a convenient balance

¨ Between high-level programming languages, on the one hand

¨ And a great variety of low-level machine languages, on the other
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The desired VM language should satisfy requirements 
coming both from above and below [1/2]

¨ First, the language should have a reasonable expressive power
¤ VM languages feature arithmetic-logical commands, push/pop commands, 

branching commands, and function commands

¤ These VM commands should be sufficiently “high” so that the VM code 
generated by the compiler will be reasonably elegant and well structured
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¨ At the same time, the VM commands should be sufficiently “low” 
¤ So that the machine code generated from them by VM translators will be 

tight and efficient

¨ The translation gaps between the high-level and the VM level & the 
VM level and the machine level should not be wide
¤ One way to satisfy these somewhat conflicting requirements is to base the 

interim VM language on an abstract architecture called a stack machine

The desired VM language should satisfy requirements 
coming both from above and below [2/2]
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STACK MACHINE

Magicians protect their secrets not because the secrets are large and 
important, but because they are so small and trivial. The wonderful effects 
created on stage are often the result of a secret so absurd that the 
magician would be embarrassed to admit that that was how it was done.

Christopher Priest, The Prestige
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Stack machine

¨ The centerpiece of the stack machine model is an abstract data 
structure called a stack

¨ A stack is a sequential storage space that grows and shrinks as 
needed

¨ The stack supports various operations, the two key ones being: 
¤ push

¤ pop
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Push and Pop

¨ The push operation adds a value to the top of the 
stack
¤ Like adding a plate to the top of a stack of plates

¨ The pop operation removes the stack’s top value
¤ The value that was just before it becomes the top stack 

element
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push/pop
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Some more about the push/pop logic

¨ The push/pop logic results in a last-in-first-out (LIFO) access logic: 
¤ the popped value is always the last one that was pushed onto the stack

¨ As it turns out, this access logic lends itself perfectly to program 
translation and execution purposes
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Observe that stack access is different from 
conventional memory access                            [1/2]

¨ First, the stack is accessible only from its top
¤ Whereas regular memory allows direct and indexed access to any value in the 

memory

¨ Second, reading a value from the stack is a lossy operation: 
¤ Only the top value can be read, and the only way to access it entails removing 

it from the stack 
n Although some stack models also provide a peek operation (reading without removing) 

¤ In contrast, the act of reading a value from a regular memory leaves no impact 
on the memory’s state
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Observe that stack access is different from 
conventional memory access                            [2/2]

¨ Lastly, writing to the stack entails adding a value onto the stack’s top 
without changing the other values in the stack
¤ In contrast, writing an item into a regular memory location is a lossy 

operation, since it overrides the location’s previous value
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STACK ARITHMETIC
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Stack arithmetic

¨ Consider the generic operation x op y, where the operator op is 
applied to the operands x and y, for example,  and so on 

¨ In a stack machine, each x op y operation is carried out as follows: 
¤ the operands x and y are popped off the top of the stack
¤ the value of x op y is computed
¤ finally, the computed value is pushed onto the top of the stack
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Likewise, the unary operation op x

¨ The unary operation op x is realized by 
¤ Popping x off the top of the stack
¤ Computing the value of op x, and 
¤ Finally pushing this value onto the top of the stack
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Simple stack arithmetic
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LET’S TRY SOMETHING A LITTLE MORE
COMPLICATED
41
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Consider the expression d = 2 − 𝑥 + (𝑦 + 9)
taken from some high-level program                [1/3] 

¨ push 2
¨ push x
¨ sub
¨ push y
¨ push 9
¨ add
¨ add
¨ pop d

// d = 2 − 𝑥 	+	(𝑦	 + 	9)
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Consider the expression d = 2 − 𝑥 + (𝑦 + 9)
taken from some high-level program                [2/3] 
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Consider the expression d = 2 − 𝑥 + (𝑦 + 9)
taken from some high-level program                [3/3] 
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From the stack’s perspective

¨ Each arithmetic or logical operation has the net impact of replacing 
the operation’s operands with the operation’s result
¤ Without affecting the rest of the stack

¨ This is similar to how humans perform mental arithmetic, using our 
short-term memory 
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For example, how do we compute 3 x 11 + 7 − 6

¨ We start by mentally popping 11 and 7 off the expression and 
calculating 11 + 7

¨ We then plug the resulting value back into the expression, yielding 
3 x 18 − 6

¨ The net effect is that 11 + 7 has been replaced by 18, and the rest 
of the expression remains the same as before
¤ We can now proceed to perform similar pop-compute-and-push mental 

operations until the expression is reduced to a single value
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These examples illustrate an important virtue of 
stack machines

¨ Any arithmetic and logical expression— no matter how complex
¤ Can be systematically converted into, and evaluated by, a sequence of simple 

operations on a stack

¨ Therefore, one can write a compiler that translates high-level arithmetic 
and logical expressions into sequences of stack commands

¨ Once the high-level expressions have been reduced into stack commands?
¤ We can proceed to evaluate them using a stack machine implementation
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Every computer system must specify a run-time
model                                                           [1/2]

¨ This model answers essential questions without which programs cannot 
run: 
¤ How to start a program’s execution
¤ What the computer should do when a program terminates
¤ How to pass arguments from one function to another
¤ How to allocate memory resources to running functions
¤ How to free memory resources when they are no longer needed, and so on 
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Every computer system must specify a run-time
model                                                           [2/2]

¨ In particular, the VM translator will not only translate the VM 
commands (push, pop, add, and so on) into assembly instructions

¨ The translator will also generate assembly code that realizes an 
envelope in which the program runs
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High-level languages allow writing programs in high-
level terms

¨ For example, an expression like 𝑥 = −𝑏 + 𝑏! − 4𝑎𝑐
¤ Can be written as 𝑥 = −𝑏 + 𝑠𝑞𝑟𝑡(𝑝𝑜𝑤𝑒𝑟 𝑏, 2 − 4 ∗ 𝑎 ∗ 𝑐 )
¤ This is almost as descriptive as the real thing

¨ Note the difference between primitive operations like + and − and 
functions like sqrt and power
¤ The former are built into the basic syntax of the high-level language
¤ The latter are extensions of the basic language
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Another feature of high-level languages

¨ The unlimited capacity to extend the language at will

¨ Of course, at some point, someone must implement functions; for e.g., 
sqrt and power

53

SOFTWARECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L15.54

The story of implementing these abstractions is 
completely separate from the story of using them

¨ Application programmers can assume that each one of these functions 
will get executed — somehow— and … 

¨ Following its execution, control will return — somehow —to the next 
operation in one’s code

54



SLIDES CREATED BY: SHRIDEEP PALLICKARA L15.28

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

FUNCTIONS

Any problem in computer science can be solved with another level of 
indirection. Except for the problem of too many layers of indirection.

David Wheeler
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Functions

¨ Every programming language is characterized by a fixed set of built-
in operations 

¨ In addition, high-level and some low-level languages offer the great 
freedom of extending this fixed repertoire
¤ With an open-ended collection of programmer-defined operations

¨ Depending on the language, these canned operations are typically 
called subroutines, procedures, methods, or functions
¤ We will collectively call these functions
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Functions: the bread and butter of modular 
programming

¨ Functions are standalone programming units that are allowed to call 
each other for their effect
¤ For example, solve can call sqrt

n And sqrt, in turn, can call power

¨ This calling sequence can be as deep as we please, as well as 
recursive
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Typically, the calling function (the caller) passes 
arguments to the called function (the callee) 

¨ The caller suspends its execution until the callee completes its execution

¨ The callee uses the passed arguments to execute or compute 
something and then returns a value (which may be void) to the caller

¨ The caller then snaps back into action, resuming its execution
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When one function (the caller) calls a function (the 
callee), someone must take care of the following: 

¨ Save the return address, which is the address within the caller’s code 
to which execution must return after the callee completes its execution

¨ Save the memory resources of the caller 

¨ Allocate the memory resources required by the callee

¨ Make the arguments passed by the caller available to the callee’s 
code

¨ Start executing the callee’s code
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When the callee terminates and returns a value, 
someone must take care of the following overhead: 

¨ Make the callee’s return value available to the caller’s code

¨ Recycle the memory resources used by the callee

¨ Reinstate the previously saved memory resources of the caller 

¨ Retrieve the previously saved return address

¨ Resume executing the caller’s code, from the return address onward 
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Blissfully, 

¨ High-level programmers don’t have to ever think about all these nitty-
gritty chores

¨ The assembly code generated by the compiler handles them
¤ Stealthily and efficiently
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In well-designed languages, built-in commands & programmer-
defined functions have the same look and feel                     [1/2]

¨ For example, to compute 𝑥 + 𝑦 using a stack machine, we push x, 
push y, and add

¨ In doing so, we expect the add implementation to pop the two top 
values off the stack, add them up, and push the result onto the stack 
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In well-designed languages, built-in commands & programmer-
defined functions have the same look and feel                     [2/2]

¨ Suppose now that either we, or someone else, has written a power 
function designed to compute xy

¤ To use this function, we follow exactly the same routine: we push x, push y, 
and call power

¨ This consistent calling protocol allows composing primitive commands 
and function calls seamlessly
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This consistent calling protocol allows composing 
primitive commands and function calls seamlessly

¨ For example, expressions like 𝑥 + 𝑦 " can be evaluated using 
¤ push x, push y, add, push 3, call power

¨ The only difference between applying a primitive operation and 
invoking a function is the keyword call preceding the latter 

¨ Everything else is exactly the same
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Applying a primitive operation and invoking a 
function is exactly the same … 

¨ Both operations require the caller to set the stage by pushing 
arguments onto the stack

¨ Both operations are expected to consume their arguments, and 

¨ Both operations are expected to push return values onto the stack
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Computing the hypotenuse

¨ 𝑎! + 𝑏! Function main()
    Push 3
    Push 4
    call hypot
    return

Function hypot(x,y)
    Push x
    Push x
    Call mult
    Push y
    Push y
    Call mult
    add
    Call sqrt
    Return

Function mult(x,y)
    ....
    Return

Function sqrt(num)
    ...
    Return
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The contents of this slide-set are based on the 
following references
¨ Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a 

Modern Computer from First Principles. 2nd Edition. ISBN-10/ ISBN-13: 0262539802 
/ 978-0262539807. MIT Press. [Part II, Chapter 7-8] 
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