CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

CS250: FOUNDATIONS OF COMPUTER SYSTEMS
[SOFTWARE/NETWORKING]

Lugging a torrent of bits
From here to there
And through thin air

With fidelity ... for an error
begets a retransmission and then another

SHRIDEEP PALLICKARA

What's done to a bit, is done to the next Compufer Science

Be it a blockchain or a simple text . .
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
1
Frequently asked questions from the previous class
survey
Why is Python used so heavily if it's slow?
Does stack have some role in the StackOverflowError?
Is bytecode specific to Java?
COLORADO STATE UNIVERSITY (oo o e earvENT SOFTWARE & NETWORKING L16.2
2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Functions
Execution of nested functions

Networking

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.3

&

FUNCTIONS

Any problem in computer science can be solved with another level of
indirection. Except for the problem of too many layers of indirection.
David Wheeler

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Functions

Every programming language is characterized by a fixed set of built-
in operations

In addition, high-level and some low-level languages offer the great
freedom of extending this fixed repertoire

With an open-ended collection of programmer-defined operations

Depending on the language, these canned operations are typically
called subroutines, procedures, methods, or functions

We will collectively call these functions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.5

5

Functions: the bread and butter of modular
programming

Functions are standalone programming units that are allowed to call
each other for their effect
For example, solve can call sgrt

And sqgrt, in turn, can call power

This calling sequence can be as deep as we please, as well as
recursive

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Typically, the calling function (the caller) passes
arguments to the called function (the callee)
The caller suspends its execution until the callee completes its execution

The callee uses the passed arguments to execute or compute
something and then returns a value (which may be void) to the caller

The caller then snaps back into action, resuming its execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.7

7

When one function (the caller) calls a function (the
callee), someone must take care of the following:

Save the return address, which is the address within the caller’s code
to which execution must return after the callee completes its execution

Save the memory resources of the caller
Allocate the memory resources required by the callee

Make the arguments passed by the caller available to the callee’s
code

Start executing the callee’s code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.4

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

When the callee terminates and returns a value,
someone must take care of the following overhead:
Make the callee’s return value available to the caller’s code
Recycle the memory resources used by the callee
Reinstate the previously saved memory resources of the caller
Retrieve the previously saved return address

Resume executing the caller’s code, from the return address onward

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.9

9

Blissfully,

High-level programmers don’t have to ever think about all these nitty-
gritty chores

The assembly code generated by the compiler handles them

Stealthily and efficiently

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.5

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

In well-designed languages, built-in commands & programmer-
defined functions have the same look and feel [1/2]

For example, to compute x + y using a stack machine, we push x,
push y, and add

In doing so, we expect the add implementation to pop the two top

values off the stack, add them up, and push the result onto the stack

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.11

11

In well-designed languages, built-in commands & programmer-
defined functions have the same look and feel [2/2]

Suppose now that either we, or someone else, has written a power
function designed to compute xY

To use this function, we follow exactly the same routine: we push x, push y,
and call power

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.6

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

This consistent calling protocol allows composing
primitive commands and function calls seamlessly

For example, expressions like (x + y)3 can be evaluated using
push x, push y, add, push 3, call power

The only difference between applying a primitive operation and
invoking a function is the keyword call preceding the latter

Everything else is exactly the same

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.13

13

Applying a primitive operation and invoking a
function is exactly the same ...

Both operations require the caller to set the stage by pushing
arguments onto the stack

Both operations are expected to consume their arguments, and

Both operations are expected to push return values onto the stack

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Computing the hypotenuse

1/(12 + b2 Function main ()

Push 3 Function mult (x,vy)
Push 4 e

call hypot Return

return

Function hypot (x,Vy) Function sqgrt (num)
Push x .
Push x Return
Call mult
Push y
Push y
Call mult
add
Call sqgrt
Return

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.15

15

During run-time, each function sees a private world,
consisting of its own working stack and memory segments

These separate worlds are connected through two “wormholes”
When a function says call mult?
The arguments that it pushed onto its stack prior to the call are somehow passed to
the argument segment of the callee
Likewise, when a function says return?
The last value that it pushed onto its stack just before returning is somehow copied
onto the stack of the callee

Replacing the previously pushed arguments

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

A computer program consists of typically several
and possibly many functions [1/2]

Yet at any given point during run-time, only a few of these functions
are actually doing something

We use the term calling chain to refer, conceptually, to all the
functions that are currently involved in the program’s execution

When a VM program starts running, the calling chain consists of one
function only, say, main

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.17

17

A computer program consists of typically several
and possibly many functions [2/2]

At some point, main may call another function, say, foo, and that
function may call yet another function, say, bar

At this point the calling chainis main = foo =2 bar

Each function in the calling chain waits for the function that it called to
return

Thus, the only function truly active in the calling chain is the last one

Which we call the current function, meaning the currently executing function

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Assisting functions in getting to do their work

In order to carry out their work, functions normally use local and
argument variables

These variables are temporary:

The memory segments that represent them must be allocated when the function

starts executing and

Can be recycled when the function returns

This memory management task is complicated by the requirement that
function calling is allowed to be arbitrarily nested as well as recursive

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.19

19

Each function lives and executes in its own private
world
During run-time, each function call must be executed independently of

all the other calls

And maintain its own stack frame, local variables, and argument variables

How can we implement this unlimited nesting mechanism and the
memory management tasks associated with it2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

The property that makes this housekeeping task
tractable is the linear nature of the call-and-return logic

Although the function calling chain may be arbitrarily deep as well as
recursive

At any given point in time, only one function executes at the chain’s end

While all the other functions up the calling chain are waiting for it to return

This Last-In-First-Out processing model lends itself perfectly to the
stack data structure, which is also LIFO

COLORADD STATE UNIVERSITY (enen d S0 o sorwae &Newworane L1621
21
Looking at the mechanics a little closer ... [1/2]

Assume that the current function is foo

Suppose that foo has already pushed some values onto its working
stack and has modified some entries in its memory segments

Suppose that at some point foo wants to call another function, bar,
for its effect

At this point we have to put f00’s execution on hold until bar will
terminate its execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.11

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Looking at the mechanics a little closer ... [2/2]

Now, putting £o0’s working stack on hold is not a problem:

Because the stack grows only in one direction

The working stack of bar will never override previously pushed values

Therefore, saving the working stack of the caller is easy —

We get it “for free” thanks to the linear and unidirectional stack structure

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.23

23

But how can we save foo’s memory segments?

If we wish to put these segments on hold?

We can push their pointers onto the stack and pop them later

When we’ll want to bring foo back to life

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Frames and multi-function settings

We use the term frame to refer, collectively, to the set of pointer
values needed for saving and reinstating the function’s state

We see that once we move from a single function setting to a
multifunction setting?

The humble stack begins to attain a rather formidable role in our story

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.25

25

When handling the call functionName
command

The runtime pushes the caller’s frame onto the stack

At the end of this housekeeping, we are ready to jump to executing
the callee’s code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.13

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Returning from the callee to the caller when the
former terminates is trickier

Because the return command specifies no return address

The caller’s anonymity is inherent in the notion of a function call:
Functions like mult or sgrt are designed to serve any caller, implying

that a return address cannot be specified a priori

Instead, a return command is interpreted as follows

Redirect the program’s execution to the memory location holding the command just
following the call command that invoked the current function

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.27

27

But where shall we save the return address?

Once again, the resourceful stack comes to the rescue

The VM translator advances from one VM command to the next,
generating assembly code as it goes along
When we encounter a call foo command in the VM code, we know
exactly which command should be executed when foo terminates

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

The backstage on which this drama plays out is the

stack
(o

01 Each call operation is implemented by saving the frame of the caller
on the stack and jumping to execute the callee

1 Each return operation is implemented by

Using the most recently stored frame for getting the return address within
the caller’s code and reinstating its memory segments

Copying the topmost stack value (the return value) onto the stack location
associated with argument O, and

Jumping to execute the caller’s code from the return address onward
01 All these operations must be realized by generated assembly code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.29

29

Hey | just met you
The network’s laggy
But here’s my data

So store it maybe
- Kyle Kingsbury, Carly Rae Jepsen and the Perils of Network

Partitions

® o o L LB
- »

-~
COMMUNICATIONS & NETWORKgG

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Example:
Setting up connections to a server

Programs open a socket to a server that’s listening for connections

To create a Socket you need to know the Internet host you want to

connect to

Servers don’t know who will contact them
If it did, difficult to synchronize when this would happen

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.31

31

An analogy

Server is like a person sitting by the phone
Doesn’t know who will call and when

When the phone rings?

Talk to whoever is on the other line

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.16

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Java provides a ServersSocket to enable writing
servers

ServerSocket runs on the server

Listens for incoming network connections on a particular port on the host
that it runs on

When a client socket on a remote host attempts to connect to that
server port

(1) Server wakes up
(2) Negotiates a connection between the client and server

(3) Opens a regular Socket between the two hosts

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.33

33

Some more about the two types of sockets

ServerSockets wait for connections

Client Sockets initiate connections

Once the ServerSocket has set up the connection?

Data always travels over the regular Socket

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Using the ServersSocket

Created on a particular port using the ServerSocket (port)
constructor

Listen for communications on that port using accept ()
o Blocks until a client attempts to make connection

O Returns a Socket object that connects the client to the server

O Use the Socket’s getInputStream() and getOutputStream() to
communicate

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.35

35

Creating the ServerSocket

ServerSocket serverSocket =
new ServerSocket (5000) ;
Tries to create a server socket on port 5000

ServerSocket serverSocket =
new ServerSocket (5000, 100);
Can hold up to 100 incoming connections

ServerSocket serverSocket =
new ServerSocket (5000, 100,
InetAddress.getHostByName
(“address2.cs.colostate.edu”)) ;

On a multi-homed host, specify the network-address over which connections should be
accepted

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Accepting network connections

ServerSocket serverSocket =
new ServerSocket (portNum) ;

while (true) {

Socket socket = serverSocket.accept():
}
COLORADD STATE UNIVERSITY SSuierSiBnntioss Souame &Nemonane L1637
37
Closing the client and server sockets
Closing a ServerSocket frees a port on the host that it runs on
Closing a Socket breaks the connection between the local and
remote hosts
COLORADO STATE UNIVERSITY (oo o e earvENT SOFTWARE & NETWORKING L16.38
38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

We exchange byte streams over the socket

B
1 The Java. 10 package contains the DataInputStream and
DataOutputStream that lets you do this elegantly

0o DataInputStream din =
new DatalnputStream(socket.getInputStream())

0 DataOutputStream dout =
new DataOutputStream(socket.getOutputStream()):

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.39

39

TOPICS THAT WE WILL COVER

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Communications & Networking:
Topics that we will cover

Data Switched Bandwidth vs
Transmission Networks Latency

Multiplexing

L Encapsulation —

Internet Other
Architecture " considerations
IP TCP UDP DNS NAT

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING

41

{How DATA IS SENT}

COMMUNICATIONS & NETWORKING

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

How is the data sent?

Are we sending 1’s and 0’s2

Whatever the physical medium, we use signals

Electromagnetic waves traveling at the speed of light
Speed of light is different in different mediums

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.43

43

Components of encoding binary data in a signal
Modulation
Duplexity
COLORADO STATE UNIVERSITY (oo o e earvENT SOFTWARE & NETWORKING L16.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Encoding binary data:
Modulation

Obijective is to send a pair of distinguishable signals

Vary frequency, amplitude, or phase of the signal to transmit
information

E.g. vary the power (amplitude) of signal

x(t) =A sin(2xft + 60)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.45

45

Encoding binary data:
Duplexity

How many bit streams can be encoded on a link at a time?

If it is one: nodes must share access to link

Can data flow in both directions at the same time?
Yes = full-duplex
No =» half-duplex

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Assume we are working with two signals

High and low

In practice:
Different voltages on a copper-based link

Different power-levels on an optical link

For our purposes, let’s ignore details of modulation

COLORADD STATE UNIVERSITY Sosir il Sonriscsss oo Sorwmne &Nerworane L1647
47
7 ° .
Let’s do the obvious thing
Map 1 to a high signal
Map O to a low signal
SOoFTWARE & NETWORKING L16.48

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.24

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Non-return to zero (NRZ)

i LIIL

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.49

49

Problems with NRZ because of consecutive 1’s and
O’s: BASELINE WANDER

Receiver keeps average of the signal seen so far

Average is used to distinguish between low and high

Lots of consecutive 1/0’s will make it difficult to detect a significant

change

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.25

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Problems with NRZ because of consecutive 1’s and
O’s: CLOCK RECOVERY

Every clock cycle, sender transmits and the receiver receives

Sender and receiver’s clocks must be perfectly synchronized

Otherwise, it is not possible to decode the signal

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.51

51

Manchester encoding

0 is a low-to-high transition

1 is a high-to-low transition

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING L16.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.26

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Manchester encoding and NRZ

NRZ
oo0o1o1111010O0O0OO0OT10

_ I I
N vre e L

Manchester Encoding

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING

L16.53

53

Some more about Manchester encoding

Doubles the rate at which signal transitions are made on the link

Receiver has V2 the time to detect each pulse
Rate of signal changes: baud rate

Bit rate is /2 the baud rate

Encoding is considered 50% efficient

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SOFTWARE & NETWORKING

L16.54

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L16.27

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a
Modern Computer from First Principles. 2" Edition. ISBN-10/ ISBN-13: 0262539802
/ 978-0262539807. MIT Press. [Part Il, Chapter 7-8]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT SoFTWARE & NETWORKING L16.55

55

SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.28

