
SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS250: FOUNDATIONS OF COMPUTER SYSTEMS
[SOFTWARE/NETWORKING]

SHRIDEEP PALLICKARA

Computer Science
Colorado State University

Lugging a torrent of bits 
From here to there 
    And through thin air

With fidelity ... for an error  
   begets a retransmission and then another

What's done to a bit, is done to the next
 Be it a blockchain or a simple text

1

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.2

Frequently asked questions from the previous class 
survey

¨ Why is Python used so heavily if it’s slow?

¨ Does stack have some role in the StackOverflowError?
¨ Is bytecode specific to Java?

2



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.3

Topics covered in this lecture

¨ Functions

¨ Execution of nested functions
¨ Networking

3

COMPUTER SCIENCE DEPARTMENT

FUNCTIONS

Any problem in computer science can be solved with another level of 
indirection. Except for the problem of too many layers of indirection.

David Wheeler

4



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.5

Functions

¨ Every programming language is characterized by a fixed set of built-
in operations 

¨ In addition, high-level and some low-level languages offer the great 
freedom of extending this fixed repertoire
¤ With an open-ended collection of programmer-defined operations

¨ Depending on the language, these canned operations are typically 
called subroutines, procedures, methods, or functions
¤ We will collectively call these functions

5

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.6

Functions: the bread and butter of modular 
programming

¨ Functions are standalone programming units that are allowed to call 
each other for their effect
¤ For example, solve can call sqrt

n And sqrt, in turn, can call power

¨ This calling sequence can be as deep as we please, as well as 
recursive

6



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.7

Typically, the calling function (the caller) passes 
arguments to the called function (the callee) 

¨ The caller suspends its execution until the callee completes its execution

¨ The callee uses the passed arguments to execute or compute 
something and then returns a value (which may be void) to the caller

¨ The caller then snaps back into action, resuming its execution

7

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.8

When one function (the caller) calls a function (the 
callee), someone must take care of the following: 

¨ Save the return address, which is the address within the caller’s code 
to which execution must return after the callee completes its execution

¨ Save the memory resources of the caller 

¨ Allocate the memory resources required by the callee

¨ Make the arguments passed by the caller available to the callee’s 
code

¨ Start executing the callee’s code

8



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.9

When the callee terminates and returns a value, 
someone must take care of the following overhead: 

¨ Make the callee’s return value available to the caller’s code

¨ Recycle the memory resources used by the callee

¨ Reinstate the previously saved memory resources of the caller 

¨ Retrieve the previously saved return address

¨ Resume executing the caller’s code, from the return address onward 

9

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.10

Blissfully, 

¨ High-level programmers don’t have to ever think about all these nitty-
gritty chores

¨ The assembly code generated by the compiler handles them
¤ Stealthily and efficiently

10



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.11

In well-designed languages, built-in commands & programmer-
defined functions have the same look and feel                     [1/2]

¨ For example, to compute 𝑥 + 𝑦 using a stack machine, we push x, 
push y, and add

¨ In doing so, we expect the add implementation to pop the two top 
values off the stack, add them up, and push the result onto the stack 

11

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.12

In well-designed languages, built-in commands & programmer-
defined functions have the same look and feel                     [2/2]

¨ Suppose now that either we, or someone else, has written a power 
function designed to compute xy

¤ To use this function, we follow exactly the same routine: we push x, push y, 
and call power

12



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.13

This consistent calling protocol allows composing 
primitive commands and function calls seamlessly

¨ For example, expressions like 𝑥 + 𝑦 ! can be evaluated using 
¤ push x, push y, add, push 3, call power

¨ The only difference between applying a primitive operation and 
invoking a function is the keyword call preceding the latter 

¨ Everything else is exactly the same

13

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.14

Applying a primitive operation and invoking a 
function is exactly the same … 

¨ Both operations require the caller to set the stage by pushing 
arguments onto the stack

¨ Both operations are expected to consume their arguments, and 

¨ Both operations are expected to push return values onto the stack

14



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.15

Computing the hypotenuse

¨ 𝑎" + 𝑏" Function main()
    Push 3
    Push 4
    call hypot
    return

Function hypot(x,y)
    Push x
    Push x
    Call mult
    Push y
    Push y
    Call mult
    add
    Call sqrt
    Return

Function mult(x,y)
    ....
    Return

Function sqrt(num)
    ...
    Return

15

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.16

During run-time, each function sees a private world, 
consisting of its own working stack and memory segments

¨ These separate worlds are connected through two “wormholes”
¤ When a function says call mult?

n The arguments that it pushed onto its stack prior to the call are somehow passed to 
the argument segment of the callee

¤ Likewise, when a function says return? 
n The last value that it pushed onto its stack just before returning is somehow copied 

onto the stack of the callee
n Replacing the previously pushed arguments

16



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.17

A computer program consists of typically several 
and possibly many functions                           [1/2]

¨ Yet at any given point during run-time, only a few of these functions 
are actually doing something

¨ We use the term calling chain to refer, conceptually, to all the 
functions that are currently involved in the program’s execution

¨ When a VM program starts running, the calling chain consists of one 
function only, say, main

17

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.18

A computer program consists of typically several 
and possibly many functions                           [2/2]

¨ At some point, main may call another function, say, foo, and that 
function may call yet another function, say, bar
¤ At this point the calling chain is  main à foo à bar 

¨ Each function in the calling chain waits for the function that it called to 
return

¨ Thus, the only function truly active in the calling chain is the last one
¤ Which we call the current function, meaning the currently executing function 

18



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.19

Assisting functions in getting to do their work

¨ In order to carry out their work, functions normally use local and 
argument variables
¤ These variables are temporary: 

n The memory segments that represent them must be allocated when the function 
starts executing and 

n Can be recycled when the function returns

¨ This memory management task is complicated by the requirement that 
function calling is allowed to be arbitrarily nested as well as recursive

19

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.20

Each function lives and executes in its own private 
world

¨ During run-time, each function call must be executed independently of 
all the other calls 
¤ And maintain its own stack frame, local variables, and argument variables

¨ How can we implement this unlimited nesting mechanism and the 
memory management tasks associated with it? 

20



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.21

The property that makes this housekeeping task 
tractable is the linear nature of the call-and-return logic

¨ Although the function calling chain may be arbitrarily deep as well as 
recursive
¤ At any given point in time, only one function executes at the chain’s end

¤ While all the other functions up the calling chain are waiting for it to return

¨ This Last-In-First-Out processing model lends itself perfectly to the 
stack data structure, which is also LIFO 

21

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.22

Looking at the mechanics a little closer …        [1/2]

¨ Assume that the current function is foo

¨ Suppose that foo has already pushed some values onto its working 
stack and has modified some entries in its memory segments

¨ Suppose that at some point foo wants to call another function, bar, 
for its effect 

¨ At this point we have to put foo’s execution on hold until bar will 
terminate its execution 

22



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.23

Looking at the mechanics a little closer …        [2/2]

¨ Now, putting foo’s working stack on hold is not a problem: 
¤ Because the stack grows only in one direction
¤ The working stack of bar will never override previously pushed values

¨ Therefore, saving the working stack of the caller is easy —
¤ We get it “for free” thanks to the linear and unidirectional stack structure

23

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.24

But how can we save foo’s memory segments?

¨ If we wish to put these segments on hold?

¨ We can push their pointers onto the stack and pop them later
¤ When we’ll want to bring foo back to life

24



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.25

Frames and multi-function settings

¨ We use the term frame to refer, collectively, to the set of pointer 
values needed for saving and reinstating the function’s state

¨ We see that once we move from a single function setting to a 
multifunction setting?
¤ The humble stack begins to attain a rather formidable role in our story

25

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.26

When handling the call functionName
command

¨ The runtime pushes the caller’s frame onto the stack

¨ At the end of this housekeeping, we are ready to jump to executing 
the callee’s code 

26



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.27

Returning from the callee to the caller when the 
former terminates is trickier

¨ Because the return command specifies no return address

¨ The caller’s anonymity is inherent in the notion of a function call: 
¤ Functions like mult or sqrt are designed to serve any caller, implying 

that a return address cannot be specified a priori 

¤ Instead, a return command is interpreted as follows
n Redirect the program’s execution to the memory location holding the command just 

following the call command that invoked the current function 

27

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.28

But where shall we save the return address? 

¨ Once again, the resourceful stack comes to the rescue

¨ The VM translator advances from one VM command to the next, 
generating assembly code as it goes along
¤ When we encounter a call foo command in the VM code, we know 

exactly which command should be executed when foo terminates

28



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.29

The backstage on which this drama plays out is the 
stack

¨ Each call operation is implemented by saving the frame of the caller 
on the stack and jumping to execute the callee

¨ Each return operation is implemented by 
¤ Using the most recently stored frame for getting the return address within 

the caller’s code and reinstating its memory segments 
¤ Copying the topmost stack value (the return value) onto the stack location 

associated with argument 0, and 
¤ Jumping to execute the caller’s code from the return address onward

¨ All these operations must be realized by generated assembly code

29

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.30

Topics covered in this lecture

¨ Stacks

¨ Functions
¨ Execution of nested functions

¨ Networking

COMMUNICATIONS & NETWORKING

Hey I just met you 
The network’s laggy 
But here’s my data 
So store it maybe 

Kyle Kingsbury, Carly Rae Jepsen and the Perils of Network 
Partitions

30



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.31

Example:  
Setting up connections to a server

¨ Programs open a socket to a server that’s listening for connections

¨ To create a Socket you need to know the Internet host you want to 
connect to

¨ Servers don’t know who will contact them
¤ If it did, difficult to synchronize when this would happen

31

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.32

An analogy

¨ Server is like a person sitting by the phone
¤ Doesn’t know who will call and when
¤ When the phone rings?

n Talk to whoever is on the other line

32



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.33

Java provides a ServerSocket to enable writing 
servers

¨ ServerSocket runs on the server
¤ Listens for incoming network connections on a particular port on the host 

that it runs on

¨ When a client socket on a remote host attempts to connect to that 
server port
① Server wakes up
② Negotiates a connection between the client and  server
③ Opens a regular Socket between the two hosts 

33

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.34

Some more about the two types of sockets

¨ ServerSockets wait for connections

¨ Client Sockets initiate connections

¨ Once the ServerSocket has set up the connection?
¤ Data always travels over the regular Socket

34



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.35

Using the ServerSocket

¨ Created on a particular port using the ServerSocket(port) 
constructor

¨ Listen for communications on that port using accept()
¤ Blocks until a client attempts to make connection
¤ Returns a Socket object that connects the client to the server

¨ Use the Socket’s getInputStream() and getOutputStream() to 
communicate 

35

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.36

Creating the ServerSocket

¨ ServerSocket serverSocket =
new ServerSocket(5000);

¤ Tries to create a server socket on port 5000

¨ ServerSocket serverSocket =
new ServerSocket(5000, 100);

¤ Can hold up to 100 incoming connections

¨ ServerSocket serverSocket =
new ServerSocket(5000, 100,
InetAddress.getHostByName

(“address2.cs.colostate.edu”));
¤ On a multi-homed host, specify the network-address over which connections should be 

accepted

36



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.37

Accepting network connections 

ServerSocket serverSocket =
new ServerSocket(portNum);

while(true) {

Socket socket = serverSocket.accept();

...       

}

37

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.38

Closing the client and server sockets

¨ Closing a ServerSocket frees a port on the host that it runs on

¨ Closing a Socket breaks the connection between the local and 
remote hosts

38



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.39

We exchange byte streams over the socket

¨ The java.io package contains the DataInputStream and 
DataOutputStream that lets you do this elegantly

¨ DataInputStream din = 
new DataInputStream(socket.getInputStream());

¨ DataOutputStream dout = 
new DataOutputStream(socket.getOutputStream());

39

COMPUTER SCIENCE DEPARTMENTTOPICS THAT WE WILL COVER
40



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.41

Communications & Networking:
Topics that we will cover

Data 
Transmission

Switched 
Networks

Bandwidth vs 
Latency

Encapsulation
Internet 

Architecture

IP UDP TCP 

Other 
considerations

DNS NAT

41

COMPUTER SCIENCE DEPARTMENT

COMMUNICATIONS & NETWORKING
{HOW DATA IS SENT}

42



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.43

How is the data sent?

¨ Are we sending 1’s and 0’s?

¨ Whatever the physical medium, we use signals
¤ Electromagnetic waves traveling at the speed of light

n Speed of light is different in different mediums 

43

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.44

Components of encoding binary data in a signal

¨ Modulation

¨ Duplexity

44



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.45

Encoding binary data:
Modulation

• Objective is to send a pair of distinguishable signals

¨ Vary frequency, amplitude, or phase of the signal to transmit 
information
§ E.g. vary the power (amplitude) of signal

§ x(t) =A sin(2πft + θ)

45

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.46

Encoding binary data:
Duplexity

¨ How many bit streams can be encoded on a link at a time? 
¤ If it is one: nodes must share access to link

¨ Can data flow in both directions at the same time?
¤ Yes è full-duplex
¤ No è half-duplex

46



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.24

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.47

For our purposes, let’s ignore details of modulation

¨ Assume we are working with two signals
¤ High and low

¨ In practice:
¤ Different voltages on a copper-based link
¤ Different power-levels on an optical link

47

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.48

Let’s do the obvious thing

¨ Map 1 to a high signal 

¨ Map 0 to a low signal

48



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.25

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.49

Non-return to zero (NRZ)

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

49

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.50

Problems with NRZ because of consecutive 1’s and 
0’s: BASELINE WANDER

¨ Receiver keeps average of the signal seen so far

¨ Average is used to distinguish between low and high

¨ Lots of consecutive 1/0’s will make it difficult to detect a significant 
change 

50



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.26

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.51

Problems with NRZ because of consecutive 1’s and 
0’s: CLOCK RECOVERY

¨ Every clock cycle, sender transmits and the receiver receives

¨ Sender and receiver’s clocks must be perfectly synchronized
¤ Otherwise, it is not possible to decode the signal

51

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.52

Manchester encoding

¨ 0 is a low-to-high transition

¨ 1 is a high-to-low transition

52



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.27

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.53

Manchester encoding and NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

Manchester Encoding

NRZ

53

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.54

Some more about Manchester encoding

¨ Doubles the rate at which signal transitions are made on the link
¤ Receiver has ½ the time to detect each pulse

¨ Rate of signal changes: baud rate

¨ Bit rate is ½ the baud rate
¤ Encoding is considered 50% efficient

54



SLIDES CREATED BY: SHRIDEEP PALLICKARA L16.28

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

SOFTWARE & NETWORKINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L16.55

The contents of this slide-set are based on the 
following references
¨ Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a 

Modern Computer from First Principles. 2nd Edition. ISBN-10/ ISBN-13: 0262539802 
/ 978-0262539807. MIT Press. [Part II, Chapter 7-8] 

55


