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Indexes to the rescue!
Have you a surfeit of on-disk data?
     Needing searches by the sweat of your brow

Maintain indexes alongside thy data
    Separate and apart
Update during ingestion or writes
     A friend to consult when you search

Their raison d'etre
   To speed up what you seek
   Without many a disk seek 
The search load lightened
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Frequently asked questions from the previous class 
survey

¨ Complexity of operations 

¨ Does the depth of a BST have performance implications?
¨ Are B-Trees a better choice?
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Deletion of nodes with children in BST

¨ We looked at how you can splice out the successor

¨ You can also splice out the predecessor
¤ This has the same complexity as splicing the successor: O(h) where h is the 

height of the tree

¨ For better empirical performance, some implementations
¤ Alternate (or give equal priority to) splicing out the successor and 

predecessor

Predecessor à  Maximum value in its left subtree 
Successor    à   Minimum value in its right subtree
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SELF BALANCING TREES
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Topics covered in this lecture

¨ B-Trees
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INDICES

Wer Ordnung hält, ist nur zu faul zum Suchen. (If you keep things tidily 
ordered, you’re just too lazy to go searching.) —German proverb

6



SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.7

Databases and indices

¨ In order to efficiently find the value for a particular key in the 
database, we need a different data structure: an index

¨ Key enabling idea 
¤ Keep some additional metadata on the side
¤ Index acts as a signpost and helps you to locate the data you want

¨ If you want to search records in several different ways? 
¤ You may need several different indexes on different parts of the data 
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An index is an additional structure that is derived
from the primary data

¨ Many databases allow you to add and remove indexes
¤ This doesn’t affect the contents of the database; it only affects the 

performance of queries

¨ Maintaining additional structures incurs overheads during writes
¤ For writes, it’s hard to beat the performance of simply appending to a file, 

because that’s the simplest possible write operation

¨ Any kind of index usually slows down writes
¤ Because the index also needs to be updated every time data is written
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Trade-off in storage systems

¨ Well-chosen indexes speed up read queries
¤ but every index slows down writes

¨ For this reason, databases don’t usually index everything by default 
¤ Require you to choose indexes manually

n Using your knowledge of the application’s typical query patterns

¤ You can then choose the indexes that give your application the greatest 
benefit, without introducing more overhead than necessary
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The most widely used indexing structure?

¨ The B-tree

¨ Introduced in 1970 and called “ubiquitous” less than 10 years later
¤ Inventors: Rudolf Bayer & Edward M. McCreight while @ Boeing Research Labs
¤ ”B” was not defined: Could be for “balanced”, “broad”, “Boeing”?

¨ B-trees have stood the test of time very well

¨ They remain the standard index implementation in almost all relational 
databases, and many nonrelational databases use them too
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Nodes in B-Trees 

¨ Are usually also referred to as pages

¨ Very closely aligned with block-sizes on storage devices
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B-Tree Nodes (or pages)

¨ The node contains several keys and references to child nodes

¨ Each child node is responsible for a continuous range of keys
¤ The keys indicate where the boundaries between those ranges lie

¨ Most databases can fit into a B-tree that is three or four levels deep
¤ So, you don’t need to follow many references to find the page you are 

looking for 
¤ A four-level tree of 4 KB pages with a branching factor (or fanout) of 500 

can store up to 250 TB
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B-TREES

We are braver than a bee, and a… longer than a tree… 
Winnie the Pooh
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How data is read from stable storage

¨ HDDs and SSDs address blocks rather than individual bytes 

¨ Most operating systems have a block device abstraction 

¨ When we’re reading a single word from an HDD or an SSD? 
¤ The whole block containing it is read
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Primary limitation and design consideration for 
building efficient on-disk structures 

¨ The cost of disk access itself

¨ The smallest unit of disk operation is a block

¨ To follow a pointer to the specific location within the block, we have to 
fetch an entire block
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If we must always read a block?

¨ Why don’t we change the layout of the data structure to take 
advantage of it?

¨ Creating long dependency chains in on-disk structures greatly 
increases code and structure complexity
¤ Much better to keep the number of pointers and their spans to a minimum
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On-disk structures optimize for target storage 
specifics and optimize for fewer disk accesses

¨ Improving locality

¨ Optimizing the internal representation of the structure

¨ Reducing the number of out-of-page pointers
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B-Trees combine these aforementioned ideas

¨ Account for storage characteristics (esp. the block construct)

¨ Increase node fanout 
¨ Reduce tree height

¨ Reduce the number of node pointers
¨ Reduce frequency of balancing operations
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B-Tree analogy: vast catalog room in the library

¨ You first have to pick the correct cabinet

¨ Then the correct shelf in that cabinet
¨ Then the correct drawer on the shelf, and 

¨ Then browse through the cards in the drawer to find the one you’re 
searching for

¨ Similarly, a B-Tree builds a hierarchy that helps to navigate and 
locate the searched items quickly
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Depicting nodes in BSTs versus B-Trees       [1/2]

¨ In most of the literature, binary tree nodes are drawn as circles
¤ Each node is responsible for just one key and splits the range into two parts

n This level of detail is sufficient and intuitive

¨ B-Tree nodes are often drawn as rectangles
¤ Pointer blocks are also shown explicitly to highlight the relationship between 

child nodes and separator keys
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Depicting nodes in BSTs versus B-Trees       [2/2]

Value

Left 
Child

Right 
Child

BST Node B-Tree Node (or Page)
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Keys inside the B-Tree nodes

¨ B-Trees are sorted
¤ Keys inside the B-Tree nodes are stored in order
¤ We can use an algorithm like binary search to locate a searched key

¨ This also implies that lookups in B-Trees have logarithmic complexity
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Using B-Trees, we can efficiently execute both point 
and range queries

¨ Point queries locate a single item
¤ Expressed by the equality (=) predicate in most query languages

¨ Range queries are used to query multiple data items in order 
¤ Expressed by comparison (<, >, ≤, and ≥) predicates
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The B-Tree Hierarchy comprises multiple nodes

¨ Each node holds up to N keys 
¤ And N + 1 pointers to the child nodes

¨ Nodes are logically grouped into three groups: 
¤ Root node, which is the top of the tree
¤ Leaf nodes: Bottommost layer nodes that have no child nodes
¤ Internal nodes These are all other nodes with leaves

n There is usually more than one level of internal nodes 
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B-Tree node hierarchy

… …

Root Node

Intermediate 
Node

Leaf 
Node
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Nomenclature

¨ Since B-Trees are a page organization technique
¤ i.e., they are used to organize and navigate fixed-size pages
¤ We often use terms node and page interchangeably

¨ The relation between the node capacity and the number of keys it 
actually holds is called occupancy
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B-Trees are characterized by their fanout

¨ Fanout refers to the number of keys stored in each node

¨ Higher fanout helps to:
¤ Amortize the cost of structural changes required to keep tree balanced 
¤ Reduces the number of seeks by storing keys and pointers to child nodes in 

a single block or multiple consecutive consecutive blocks

¨ Balancing operations (namely, splits and merges) are triggered when 
the nodes are full or nearly empty
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Separator Keys

¨ Keys stored in B-Tree nodes are called index entries, separator keys, 
or divider cells

¨ Split the tree into subtrees (also called branches or subranges), 
holding corresponding key ranges
¤ Keys are stored in sorted order to allow binary search

¨ A subtree is found by locating a key and following a corresponding 
pointer from the higher-level to the lower-level
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About pointers in a node

¨ The first pointer in the node?
¤ Points to the subtree holding items less than the first key

¨ The last pointer in the node?
¤ Points to the subtree holding items greater than or equal to the last key

¨ Other pointers? 
¤ Reference subtrees between the two keys: Ki-1 ≤ Ks < Ki, where K is a set 

of keys, and Ks is a key that belongs to the subtree.
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Separator keys splitting a tree into subtrees

K1 K2 K3

Ks < K1

K1 ≤	Ks < K2 K2 ≤	Ks < K3

KS ≥	K3
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B-tree construction

¨ Rather than being built from top-to-bottom (as in BSTs), B-Trees are 
from bottom-to-top

¨ The number of leaf nodes grows, which increases the number of 
internal nodes and tree height

¨ B-Trees reserve extra space inside nodes for future insertions and 
updates
¤ Tree storage utilization can get as low as 50%, but is usually much higher

¨ Higher occupancy does not influence B-Tree performance negatively
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B-Tree lookup complexity can be viewed from two 
standpoints

¨ The number of block transfers 

¨ The number of comparisons done during the lookup
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B-Tree lookup complexity: Number of block transfers

¨ In terms of number of transfers, the logarithm base is N (number of 
keys per node)
¤ There are N times more nodes on each new level

n Following a child pointer reduces the search space by the factor of N

¤ During lookup, at most logNM pages are addressed to find a target key
n M is the total number of items in the B-Tree

¤ The number of child pointers that have to be followed on the root-to-leaf 
pass is also equal to the number of levels
n In other words, the height h of the tree
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B-Tree lookup complexity: Number of block transfers

¨ B-Tree lookup complexity is generally referenced as log M

¨ Logarithm base is generally not used in complexity analysis
¤ Changing the base simply adds a constant factor
¤ Multiplication by a constant factor does not change complexity
¤ For example, given the nonzero constant factor c, O(|c| × n) == O(n)
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B-Tree lookup complexity: Number of comparisons

¨ From the perspective of number of comparisons within a node
¤ The logarithm base is 2
¤ Since searching a key inside each node is done using binary search
¤ Every comparison halves the search space

¨ Complexity is log M
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Different ways to describe key and child offset 
counts                                                            [1/2]

¨ The original paper refers to device-dependent natural number k
¤ Nodes, in this case, can hold between k and 2k keys, but can be partially 

filled 
¤ Hold at least k + 1 and at most 2k + 1 pointers to child nodes

¨ The root page can hold between 1 and 2k keys
¤ Later, a number l is introduced, and it is said that any nonleaf page can 

have l + 1 keys
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Different ways to describe key and child offset 
counts                                                            [2/2]

¨ Other sources, describe nodes that can hold up to N separator keys 
and N + 1 pointers, with otherwise similar semantics and invariants

¨ Both approaches bring us to the same result
¤ Differences are only used to emphasize the contents of each source
¤ We stick to N for clarity 

37

COMPUTER SCIENCE DEPARTMENT

B-TREE LOOKUPS

38



SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.39

Separator keys splitting a tree into subtrees

K1 K2 K3

Ks < K1

K1 ≤	Ks < K2 K2 ≤	Ks < K3

KS ≥	K3
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Separator keys splitting a tree into subtrees

12 31 45

Ks < 121

12 ≤	Ks < 31 31 ≤	Ks < 45

KS ≥	45

40



SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.41

B-Tree: Example

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55
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B-tree Lookup Algorithm:                          [1/4]

¨ To find an item in a B-Tree, we perform a single traversal from root to 
leaf

¨ The objective of this search is to find the key or its predecessor
¤ Finding an exact match is used for point queries, updates, and deletions
¤ Finding its predecessor is useful for range scans and inserts
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B-tree Lookup Algorithm:                          [2/4]

¨ Index keys split the tree into subtrees
¤ With boundaries between two neighboring keys

¨ The algorithm starts from the root and performs a binary search
¤ This locates a subtree

¨ As soon as we find the subtree? 
¤ Follow the pointer that corresponds to it 
¤ Repeat search
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B-tree Lookup Algorithm:                          [3/4]

¨ On each level, we get a more detailed view of the tree: 
¤ We start on the most coarse-grained level (the root of the tree) 
¤ Descend to the next level where keys represent more precise, detailed 

ranges
¤ Until we finally reach leaves, where the data records are located
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B-tree Lookup Algorithm:                          [4/4]

¨ During the point query
¤ Search completes after finding (or failing to find) the target key 

¨ During the range scan
¤ Sibling pointers are followed until the end of the range is reached or the 

range predicate is exhausted
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B-Tree: Example: Looking for 53

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55
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B-Tree: Example: Looking for 20

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55
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B-Tree: Example: Looking for 20 < x < 53

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55
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The contents of this slide-set are based on the 
following references
¨ Alex Petrov. Database Internals. ISBN-10/13: 1492040347/978-1492040347 

O’Reilly Media. [Chapters 2,4] 

¨ Martin Kleppmann. Designing Data-Intensive Applications. ISBN-10/13: 
1449373321/ 978-1449373320. O'Reilly Media. [Chapter 3]
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