
SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
[DATA STRUCTURES FOR STORAGE]

SHRIDEEP PALLICKARA

Computer Science
Colorado State University

Indexes to the rescue!
Have you a surfeit of on-disk data?
 Needing searches by the sweat of your brow

Maintain indexes alongside thy data
 Separate and apart
Update during ingestion or writes
 A friend to consult when you search

Their raison d'etre
 To speed up what you seek
 Without many a disk seek
The search load lightened

1

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.2

Frequently asked questions from the previous class
survey

¨ Complexity of operations

¨ Does the depth of a BST have performance implications?
¨ Are B-Trees a better choice?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.3

Deletion of nodes with children in BST

¨ We looked at how you can splice out the successor

¨ You can also splice out the predecessor
¤ This has the same complexity as splicing the successor: O(h) where h is the

height of the tree

¨ For better empirical performance, some implementations
¤ Alternate (or give equal priority to) splicing out the successor and

predecessor

Predecessor à Maximum value in its left subtree
Successor à Minimum value in its right subtree

3

COMPUTER SCIENCE DEPARTMENT

SELF BALANCING TREES

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.5

Topics covered in this lecture

¨ B-Trees

5

COMPUTER SCIENCE DEPARTMENT

INDICES

Wer Ordnung hält, ist nur zu faul zum Suchen. (If you keep things tidily
ordered, you’re just too lazy to go searching.) —German proverb

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.7

Databases and indices

¨ In order to efficiently find the value for a particular key in the
database, we need a different data structure: an index

¨ Key enabling idea
¤ Keep some additional metadata on the side
¤ Index acts as a signpost and helps you to locate the data you want

¨ If you want to search records in several different ways?
¤ You may need several different indexes on different parts of the data

7

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.8

An index is an additional structure that is derived
from the primary data

¨ Many databases allow you to add and remove indexes
¤ This doesn’t affect the contents of the database; it only affects the

performance of queries

¨ Maintaining additional structures incurs overheads during writes
¤ For writes, it’s hard to beat the performance of simply appending to a file,

because that’s the simplest possible write operation

¨ Any kind of index usually slows down writes
¤ Because the index also needs to be updated every time data is written

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.9

Trade-off in storage systems

¨ Well-chosen indexes speed up read queries
¤ but every index slows down writes

¨ For this reason, databases don’t usually index everything by default
¤ Require you to choose indexes manually

n Using your knowledge of the application’s typical query patterns

¤ You can then choose the indexes that give your application the greatest
benefit, without introducing more overhead than necessary

9

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.10

The most widely used indexing structure?

¨ The B-tree

¨ Introduced in 1970 and called “ubiquitous” less than 10 years later
¤ Inventors: Rudolf Bayer & Edward M. McCreight while @ Boeing Research Labs
¤ ”B” was not defined: Could be for “balanced”, “broad”, “Boeing”?

¨ B-trees have stood the test of time very well

¨ They remain the standard index implementation in almost all relational
databases, and many nonrelational databases use them too

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.11

Nodes in B-Trees

¨ Are usually also referred to as pages

¨ Very closely aligned with block-sizes on storage devices

11

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.12

B-Tree Nodes (or pages)

¨ The node contains several keys and references to child nodes

¨ Each child node is responsible for a continuous range of keys
¤ The keys indicate where the boundaries between those ranges lie

¨ Most databases can fit into a B-tree that is three or four levels deep
¤ So, you don’t need to follow many references to find the page you are

looking for
¤ A four-level tree of 4 KB pages with a branching factor (or fanout) of 500

can store up to 250 TB

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

B-TREES

We are braver than a bee, and a… longer than a tree…
Winnie the Pooh

13

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.14

How data is read from stable storage

¨ HDDs and SSDs address blocks rather than individual bytes

¨ Most operating systems have a block device abstraction

¨ When we’re reading a single word from an HDD or an SSD?
¤ The whole block containing it is read

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.15

Primary limitation and design consideration for
building efficient on-disk structures

¨ The cost of disk access itself

¨ The smallest unit of disk operation is a block

¨ To follow a pointer to the specific location within the block, we have to
fetch an entire block

15

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.16

If we must always read a block?

¨ Why don’t we change the layout of the data structure to take
advantage of it?

¨ Creating long dependency chains in on-disk structures greatly
increases code and structure complexity
¤ Much better to keep the number of pointers and their spans to a minimum

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.17

On-disk structures optimize for target storage
specifics and optimize for fewer disk accesses

¨ Improving locality

¨ Optimizing the internal representation of the structure

¨ Reducing the number of out-of-page pointers

17

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.18

B-Trees combine these aforementioned ideas

¨ Account for storage characteristics (esp. the block construct)

¨ Increase node fanout
¨ Reduce tree height

¨ Reduce the number of node pointers
¨ Reduce frequency of balancing operations

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.19

B-Tree analogy: vast catalog room in the library

¨ You first have to pick the correct cabinet

¨ Then the correct shelf in that cabinet
¨ Then the correct drawer on the shelf, and

¨ Then browse through the cards in the drawer to find the one you’re
searching for

¨ Similarly, a B-Tree builds a hierarchy that helps to navigate and
locate the searched items quickly

19

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.20

Depicting nodes in BSTs versus B-Trees [1/2]

¨ In most of the literature, binary tree nodes are drawn as circles
¤ Each node is responsible for just one key and splits the range into two parts

n This level of detail is sufficient and intuitive

¨ B-Tree nodes are often drawn as rectangles
¤ Pointer blocks are also shown explicitly to highlight the relationship between

child nodes and separator keys

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.21

Depicting nodes in BSTs versus B-Trees [2/2]

Value

Left
Child

Right
Child

BST Node B-Tree Node (or Page)

21

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.22

Keys inside the B-Tree nodes

¨ B-Trees are sorted
¤ Keys inside the B-Tree nodes are stored in order
¤ We can use an algorithm like binary search to locate a searched key

¨ This also implies that lookups in B-Trees have logarithmic complexity

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.23

Using B-Trees, we can efficiently execute both point
and range queries

¨ Point queries locate a single item
¤ Expressed by the equality (=) predicate in most query languages

¨ Range queries are used to query multiple data items in order
¤ Expressed by comparison (<, >, ≤, and ≥) predicates

23

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.24

The B-Tree Hierarchy comprises multiple nodes

¨ Each node holds up to N keys
¤ And N + 1 pointers to the child nodes

¨ Nodes are logically grouped into three groups:
¤ Root node, which is the top of the tree
¤ Leaf nodes: Bottommost layer nodes that have no child nodes
¤ Internal nodes These are all other nodes with leaves

n There is usually more than one level of internal nodes

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.25

B-Tree node hierarchy

… …

Root Node

Intermediate
Node

Leaf
Node

25

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.26

Nomenclature

¨ Since B-Trees are a page organization technique
¤ i.e., they are used to organize and navigate fixed-size pages
¤ We often use terms node and page interchangeably

¨ The relation between the node capacity and the number of keys it
actually holds is called occupancy

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.27

B-Trees are characterized by their fanout

¨ Fanout refers to the number of keys stored in each node

¨ Higher fanout helps to:
¤ Amortize the cost of structural changes required to keep tree balanced
¤ Reduces the number of seeks by storing keys and pointers to child nodes in

a single block or multiple consecutive consecutive blocks

¨ Balancing operations (namely, splits and merges) are triggered when
the nodes are full or nearly empty

27

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.28

Separator Keys

¨ Keys stored in B-Tree nodes are called index entries, separator keys,
or divider cells

¨ Split the tree into subtrees (also called branches or subranges),
holding corresponding key ranges
¤ Keys are stored in sorted order to allow binary search

¨ A subtree is found by locating a key and following a corresponding
pointer from the higher-level to the lower-level

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.29

About pointers in a node

¨ The first pointer in the node?
¤ Points to the subtree holding items less than the first key

¨ The last pointer in the node?
¤ Points to the subtree holding items greater than or equal to the last key

¨ Other pointers?
¤ Reference subtrees between the two keys: Ki-1 ≤ Ks < Ki, where K is a set

of keys, and Ks is a key that belongs to the subtree.

29

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.30

Separator keys splitting a tree into subtrees

K1 K2 K3

Ks < K1

K1 ≤	Ks < K2 K2 ≤	Ks < K3

KS ≥	K3

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.31

B-tree construction

¨ Rather than being built from top-to-bottom (as in BSTs), B-Trees are
from bottom-to-top

¨ The number of leaf nodes grows, which increases the number of
internal nodes and tree height

¨ B-Trees reserve extra space inside nodes for future insertions and
updates
¤ Tree storage utilization can get as low as 50%, but is usually much higher

¨ Higher occupancy does not influence B-Tree performance negatively

31

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.32

B-Tree lookup complexity can be viewed from two
standpoints

¨ The number of block transfers

¨ The number of comparisons done during the lookup

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.33

B-Tree lookup complexity: Number of block transfers

¨ In terms of number of transfers, the logarithm base is N (number of
keys per node)
¤ There are N times more nodes on each new level

n Following a child pointer reduces the search space by the factor of N

¤ During lookup, at most logNM pages are addressed to find a target key
n M is the total number of items in the B-Tree

¤ The number of child pointers that have to be followed on the root-to-leaf
pass is also equal to the number of levels
n In other words, the height h of the tree

33

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.34

B-Tree lookup complexity: Number of block transfers

¨ B-Tree lookup complexity is generally referenced as log M

¨ Logarithm base is generally not used in complexity analysis
¤ Changing the base simply adds a constant factor
¤ Multiplication by a constant factor does not change complexity
¤ For example, given the nonzero constant factor c, O(|c| × n) == O(n)

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.35

B-Tree lookup complexity: Number of comparisons

¨ From the perspective of number of comparisons within a node
¤ The logarithm base is 2
¤ Since searching a key inside each node is done using binary search
¤ Every comparison halves the search space

¨ Complexity is log M

35

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.36

Different ways to describe key and child offset
counts [1/2]

¨ The original paper refers to device-dependent natural number k
¤ Nodes, in this case, can hold between k and 2k keys, but can be partially

filled
¤ Hold at least k + 1 and at most 2k + 1 pointers to child nodes

¨ The root page can hold between 1 and 2k keys
¤ Later, a number l is introduced, and it is said that any nonleaf page can

have l + 1 keys

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.37

Different ways to describe key and child offset
counts [2/2]

¨ Other sources, describe nodes that can hold up to N separator keys
and N + 1 pointers, with otherwise similar semantics and invariants

¨ Both approaches bring us to the same result
¤ Differences are only used to emphasize the contents of each source
¤ We stick to N for clarity

37

COMPUTER SCIENCE DEPARTMENT

B-TREE LOOKUPS

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.39

Separator keys splitting a tree into subtrees

K1 K2 K3

Ks < K1

K1 ≤	Ks < K2 K2 ≤	Ks < K3

KS ≥	K3

39

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.40

Separator keys splitting a tree into subtrees

12 31 45

Ks < 121

12 ≤	Ks < 31 31 ≤	Ks < 45

KS ≥	45

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.41

B-Tree: Example

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55

41

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.42

B-tree Lookup Algorithm: [1/4]

¨ To find an item in a B-Tree, we perform a single traversal from root to
leaf

¨ The objective of this search is to find the key or its predecessor
¤ Finding an exact match is used for point queries, updates, and deletions
¤ Finding its predecessor is useful for range scans and inserts

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.43

B-tree Lookup Algorithm: [2/4]

¨ Index keys split the tree into subtrees
¤ With boundaries between two neighboring keys

¨ The algorithm starts from the root and performs a binary search
¤ This locates a subtree

¨ As soon as we find the subtree?
¤ Follow the pointer that corresponds to it
¤ Repeat search

43

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.44

B-tree Lookup Algorithm: [3/4]

¨ On each level, we get a more detailed view of the tree:
¤ We start on the most coarse-grained level (the root of the tree)
¤ Descend to the next level where keys represent more precise, detailed

ranges
¤ Until we finally reach leaves, where the data records are located

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.45

B-tree Lookup Algorithm: [4/4]

¨ During the point query
¤ Search completes after finding (or failing to find) the target key

¨ During the range scan
¤ Sibling pointers are followed until the end of the range is reached or the

range predicate is exhausted

45

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.46

B-Tree: Example: Looking for 53

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.24

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.47

B-Tree: Example: Looking for 20

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55

47

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.48

B-Tree: Example: Looking for 20 < x < 53

30

9 20 25 38 40 55

4 6 7 9 17 20 24 25 28 29 30 33 37 38 40 53 55

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.25

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

DATA STRUCTURES FOR STORAGECOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26.49

The contents of this slide-set are based on the
following references
¨ Alex Petrov. Database Internals. ISBN-10/13: 1492040347/978-1492040347

O’Reilly Media. [Chapters 2,4]

¨ Martin Kleppmann. Designing Data-Intensive Applications. ISBN-10/13:
1449373321/ 978-1449373320. O'Reilly Media. [Chapter 3]

49

