CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Indexes to the rescue!
Have you a surfeit of on-disk data?
Needing searches by the sweat of your brow

Maintain indexes alongside thy data
Separate and apart

Update during ingestion or writes
A friend to consult when you search

Their raison d'etre
To speed up what you seek
Without many a disk seek
The search load lightened

COMPUTER SCIENCE DEPARTMENT

CS 250: FOUNDATIONS OF COMPUTER SYSTEMS
[DATA STRUCTURES FOR STORAGE]

SHRIDEEP PALLICKARA
Computer Science
Colorado State University

COLORADO STATE UNIVERSITY

survey

Complexity of operations

Are B-Trees a better choice?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Frequently asked questions from the previous class

Does the depth of a BST have performance implications?

DATA STRUCTURES FOR STORAGE L26.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Deletion of nodes with children in BST

We looked at how you can splice out the successor

You can also splice out the predecessor

This has the same complexity as splicing the successor: O(/) where 7 is the
height of the tree

For better empirical performance, some implementations
Alternate (or give equal priority to) splicing out the successor and
predecessor

Predecessor > Maximum value in its left subtree
Successor > Minimum value in its right subtree

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.3

“Look at me!

Look at me!

Look at me NOW!
It 1s fun to have fun
But you have to know how.

COLORADO STATE UNIVERSITY

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture
|

1 B-Trees

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.5

INDICES

Wer Ordnung hdlt, ist nur zu faul zum Suchen. (If you keep things tidily
ordered, you're just too lazy to go searching.) —German proverb

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.3

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Databases and indices

In order to efficiently find the value for a particular key in the
database, we need a different data structure: an index

Key enabling idea
Keep some additional metadata on the side

Index acts as a signpost and helps you to locate the data you want

If you want to search records in several different ways?

You may need several different indexes on different parts of the data

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.7

7

An index is an additional structure that is derived
from the primary data

Many databases allow you to add and remove indexes

This doesn’t affect the contents of the database; it only affects the
performance of queries

Maintaining additional structures incurs overheads during writes

For writes, it's hard to beat the performance of simply appending to a file,
because that’s the simplest possible write operation

Any kind of index usually slows down writes

Because the index also needs to be updated every time data is written

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Trade-off in storage systems

Well-chosen indexes speed up read queries

but every index slows down writes

For this reason, databases don’t usually index everything by default

Require you to choose indexes manually

Using your knowledge of the application’s typical query patterns

You can then choose the indexes that give your application the greatest
benefit, without introducing more overhead than necessary

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.9

9

The most widely used indexing structure?

The B-tree

Introduced in 1970 and called “ubiquitous” less than 10 years later
Inventors: Rudolf Bayer & Edward M. McCreight while @ Boeing Research Labs

"B” was not defined: Could be for “balanced”, “broad”, “Boeing”?
B-trees have stood the test of time very well

They remain the standard index implementation in almost all relational
databases, and many nonrelational databases use them too

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Nodes in B-Trees

Are usually also referred to as pages

Very closely aligned with block-sizes on storage devices

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.11

11

B-Tree Nodes (or pages)

The node contains several keys and references to child nodes

Each child node is responsible for a continuous range of keys

The keys indicate where the boundaries between those ranges lie

Most databases can fit into a B-tree that is three or four levels deep
So, you don’t need to follow many references to find the page you are
looking for
A four-level tree of 4 KB pages with a branching factor (or fanout) of 500
can store up to 250 TB

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

We are braver than a bee, and a... longer than a tree...
Winnie the Pooh

How data is read from stable storage

[
1 HDDs and SSDs address blocks rather than individual bytes

1 Most operating systems have a block device abstraction

1 When we’re reading a single word from an HDD or an SSD?

The whole block containing it is read

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Primary limitation and design consideration for
building efficient on-disk structures

The cost of disk access itself

The smallest unit of disk operation is a block

To follow a pointer to the specific location within the block, we have to
fetch an entire block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.15

15

If we must always read a block?

Why don’t we change the layout of the data structure to take
advantage of it?

Creating long dependency chains in on-disk structures greatly
increases code and structure complexity

Much better to keep the number of pointers and their spans to a minimum

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

On-disk structures optimize for target storage
specifics and optimize for fewer disk accesses

Improving locality

Optimizing the internal representation of the structure

Reducing the number of out-of-page pointers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.17

17

B-Trees combine these aforementioned ideas

Account for storage characteristics (esp. the block construct)
Increase node fanout

Reduce tree height
Reduce the number of node pointers

Reduce frequency of balancing operations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-Tree analogy: vast catalog room in the library

You first have to pick the correct cabinet
Then the correct shelf in that cabinet
Then the correct drawer on the shelf, and

Then browse through the cards in the drawer to find the one you're
searching for

Similarly, a B-Tree builds a hierarchy that helps to navigate and
locate the searched items quickly

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.19

19

Depicting nodes in BSTs versus B-Trees [1/2]

In most of the literature, binary tree nodes are drawn as circles

Each node is responsible for just one key and splits the range into two parts

This level of detail is sufficient and intuitive

B-Tree nodes are often drawn as rectangles

Pointer blocks are also shown explicitly to highlight the relationship between
child nodes and separator keys

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Depicting nodes in BSTs versus B-Trees [2/2]

Left / \Righ'f \l

BST Node B-Tree Node (or Page)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.21

21

Keys inside the B-Tree nodes

B-Trees are sorted
Keys inside the B-Tree nodes are stored in order

We can use an algorithm like binary search to locate a searched key

This also implies that lookups in B-Trees have logarithmic complexity

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Using B-Trees, we can efficiently execute both point
and range queries

Point queries locate a single item

Expressed by the equality (=) predicate in most query languages

Range queries are used to query multiple data items in order

Expressed by comparison (<, >, <, and 2) predicates

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.23

23

The B-Tree Hierarchy comprises multiple nodes

Each node holds up to N keys
And N + 1 pointers to the child nodes

Nodes are logically grouped into three groups:
Root node, which is the top of the tree
Leaf nodes: Bottommost layer nodes that have no child nodes

Internal nodes These are all other nodes with leaves

There is usually more than one level of internal nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-Tree node hierarchy

Root Node | |
A IENE

Intermediate | | | " | | - | | |
ete LT t e ly | t Lo ly | L]

- | I
] I

Leaf

Node

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.25

25

Nomenclature

Since B-Trees are a page organization technique
i.e., they are used to organize and navigate fixed-size pages

We often use terms node and page interchangeably

The relation between the node capacity and the number of keys it
actually holds is called occupancy

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-Trees are characterized by their fanout

Fanout refers to the number of keys stored in each node

Higher fanout helps to:
Amortize the cost of structural changes required to keep tree balanced

Reduces the number of seeks by storing keys and pointers to child nodes in
a single block or multiple consecutive consecutive blocks

Balancing operations (namely, splits and merges) are triggered when

the nodes are full or nearly empty

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.27

27

Separator Keys

Keys stored in B-Tree nodes are called index entries, separator keys,
or divider cells

Split the tree into subtrees (also called branches or subranges),
holding corresponding key ranges

Keys are stored in sorted order to allow binary search

A subtree is found by locating a key and following a corresponding
pointer from the higher-level to the lower-level

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.14

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

About pointers in a node

The first pointer in the node?

Points to the subtree holding items less than the first key

The last pointer in the node?

Points to the subtree holding items greater than or equal to the last key

Other pointers?

Reference subtrees between the two keys: K;.; < K, < K;, where K is a set
of keys, and K; is a key that belongs to the subtree.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.29

29

Separator keys splitting a tree into subtrees

|<1||(,||(3

Kg < Ky +=—— ’ Ky = K3

K]SKS<K2 KQSKS<K3

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-tree construction

Rather than being built from top-to-bottom (as in BSTs), B-Trees are
from bottom-to-top

The number of leaf nodes grows, which increases the number of
internal nodes and tree height

B-Trees reserve extra space inside nodes for future insertions and
updates

Tree storage utilization can get as low as 50%, but is usually much higher

Higher occupancy does not influence B-Tree performance negatively

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.31

31

B-Tree lookup complexity can be viewed from two
standpoints

The number of block transfers

The number of comparisons done during the lookup

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-Tree lookup complexity: Number of block transfers

In terms of number of transfers, the logarithm base is N (number of
keys per node)
There are N times more nodes on each new level
Following a child pointer reduces the search space by the factor of N

During lookup, at most logyM pages are addressed to find a target key

M is the total number of items in the B-Tree

The number of child pointers that have to be followed on the root-to-leaf
pass is also equal to the number of levels

In other words, the height /1 of the tree

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.33

33

B-Tree lookup complexity: Number of block transfers

B-Tree lookup complexity is generally referenced as log M

Logarithm base is generally not used in complexity analysis
Changing the base simply adds a constant factor
Multiplication by a constant factor does not change complexity

For example, given the nonzero constant factor ¢, O(|c| X n) == O(n)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.17

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

B-Tree lookup complexity: Number of comparisons

From the perspective of number of comparisons within a node
The logarithm base is 2
Since searching a key inside each node is done using binary search

Every comparison halves the search space

Complexity is log M

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.35

35

Different ways to describe key and child offset
counts [1/2]

The original paper refers to device-dependent natural number k

Nodes, in this case, can hold between k and 2k keys, but can be partially
filled

Hold at least k + 1 and at most 2k + 1 pointers to child nodes

The root page can hold between 1 and 2k keys

Later, a number | is introduced, and it is said that any nonleaf page can
have | + 1 keys

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Different ways to describe key and child offset

counts | 2 ‘2 |
o

01 Other sources, describe nodes that can hold up to N separator keys
and N + 1 pointers, with otherwise similar semantics and invariants

[l Both approaches bring us to the same result
o1 Differences are only used to emphasize the contents of each source

o We stick to N for clarity

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.37

37

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Separator keys splitting a tree into subtrees
|

|(1||(2||(3

KS<K]‘_ ’ — Kg =Kj3

Ky <K <Kj Ko <Ks <Kj3

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.39

39

Separator keys splitting a tree into subtrees
|

12 | 31 | 45
!
Ks<121J ’ L Ky > 45
12 <K, < 31 31 <K, <45

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-Tree: Example

30 | |
1 | ——
l_l
9 | 20 | 25 38 | 40 | 55
| 1] | 1]
— 1
(a4 [6 |7 |9 |17] |20]2a| |25[28]29] [30 33 [37 | [38] |40 [53] |55 |

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.41

41

B-tree Lookup Algorithm: [1/4]

To find an item in a B-Tree, we perform a single traversal from root to
leaf

The objective of this search is to find the key or its predecessor
Finding an exact match is used for point queries, updates, and deletions

Finding its predecessor is useful for range scans and inserts

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-tree Lookup Algorithm: [2/4]

Index keys split the tree into subtrees

With boundaries between two neighboring keys

The algorithm starts from the root and performs a binary search

This locates a subtree

As soon as we find the subtree?

Follow the pointer that corresponds to it

Repeat search

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.43

43

B-tree Lookup Algorithm: [3/4]

On each level, we get a more detailed view of the tree:
We start on the most coarse-grained level (the root of the tree)

Descend to the next level where keys represent more precise, detailed
ranges

Until we finally reach leaves, where the data records are located

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

During the point query
Search completes after finding (or failing to find) the target key

During the range scan

range predicate is exhausted

B-tree Lookup Algorithm: [4/4]

Sibling pointers are followed until the end of the range is reached or the

COLORADD STATE UNIVERSITY (oot e e RTMENT DATA STRUCTURES FOR STORAGE ~ L26.45
45
B-Tree: Example: Looking for 53
30 | |
' | | |
s
9 | 20 | 25 38 | 40 | 55
[1] |
la |6 [7 ||9 [17| [20]24| [25]28[29| [30[33[37 | [38| |40 [53] |55 |
COLORADO STATE UNIVERSITY (oo o e arvenT DATA STRUCTURES FOR STORAGE L2646

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

B-Tree: Example: Looking for 20

30 |

| —

38 | 40 | 55

24 | [25(28[29| [30 [33 |37 | [38] |40

53 | |55 |

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

DATA STRUCTURES FOR STORAGE

L26.47

47
B-Tree: Example: Looking for 20 < x < 53
|
o |]
p [

38 | 40 | 55

a |6 |7 ||o 24 | [25(28[29| [30 [33 |37 | [38] |40

53 | |55 |

Professor: SHRIDEEP PALLICKARA
COMPUTER SCIENCE DEPARTMENT

COLORADO STATE UNIVERSITY

DATA STRUCTURES FOR STORAGE

L26.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.24

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Alex Petrov. Database Internals. ISBN-10/13: 1492040347 /978-1492040347
O'Reilly Media. [Chapters 2,4]

Martin Kleppmann. Designing Data-Intensive Applications. ISBN-10/13:
1449373321/ 978-1449373320. O'Reilly Media. [Chapter 3]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompuTER SCIENCE DEPARTMENT DATA STRUCTURES FOR STORAGE L26.49

49

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.25

