CS 250: Foundation of Computer Systems [BINARY RePRESENTATIONS \& OPERATIONS]

Powering up with Binary

All you have is a 0 and 1
But the fun's just begun
Simpler math operations
Multiplications simple as additions
Representing numbers on both sides of zero Using two's complement, our unsung hero

SHRIDEEP PALLICKARA
Computer Science
Colorado State University

1

Frequently asked questions from the previous class

survey

\square Hexadecimal?
\square Conventions: Ob or base-2, 0x or base-16, or oct/octal for base-8
\square CPU cycles and the ALU:
\square How does the CPU perform arithmetic operations?
\square Does increasing the size of the memory (RAM) impact the speed of a system?Where is the Program Counter?What is the physical mechanism that allows re-writes on HDDs?
\square What makes infinite loops useful? Do we code systems with infinite loops?Why not go to a 128 -bit system?Memory concepts: registers, caches, main memory (RAM)

Topics covered in this lecture

Binary Representations

\square Properties of binary numbers
\square Operations on binary numbersDecimal to BinaryIntegers and word size implications
\square Signed numbers

3

4

Properties of binary numbers

Shifting all the bits in a number to the left by one position multiplies the binary value by 2
E.g.: Ob00000111 (value = 7)

- Shift to the left (<<): 0b000001110 (value $=2^{3}+2^{2}+2^{1}+0=14$)
E.g.: Ob01010111 (value = 87)
-Shift to the left (<<): 0b010101110

$$
\text { - Value }=2^{7}+0+2^{5}+0+2^{3}+2^{2}+2^{1}+0=128+32+8+4+2=174
$$

5

Properties of binary numbers

Shifting all the bits of an unsigned binary number to the right by one position effectively divides that number by 2
\square This does not apply to signed integer values
\square Odd numbers are rounded downE.g.: Ob01010110 (value $=86$)
\square Shift to the right (>>): 0b01010110=0b0101011=43
E.g.: Ob01010111 (value = 87)
\square Shift to the right $(\gg): 0 b 0101011+=0 b 0101011=43$

Properties of binary numbers

Multiplying two n-bit binary values together may require as many as $2 \times n$ bits to hold the result

Adding or subtracting two n-bit binary values never requires more than $n+1$ bits to hold the result

Properties of binary numbers

Incrementing (adding 1 to) the largest unsigned binary value for a given number of bits always produces a value of 0
-Ob11111111 = Ob00000000 (the last carryover of 1 overflows)
\square Decrementing (subtracting 1 from) 0 always produces the largest unsigned binary value for a given number of bits

Number of unique combinations in a byte?

Another way to think about this question is how many unique combinations of 0 s and 1 s can we make with our 8 bits?

Let's first illustrate this with 4-bits

9

Properties of binary numbers

In general, for n bits
\square The total number of unique combinations: 2^{n}
\square The largest possible number is $2^{n}-1$

Conversion from decimal to binary

The binary number is constructed from right to left
\square Step 1: Divide the decimal number by 2 and note down the remainder
\square Step 2: Divide the obtained quotient by 2, and note remainder again \square Step 3: Repeat the above steps until you get 0 as the quotient Stopping criteria

Example: Decimal number 23

$23 \div 2=11 \quad$ (Remainder 1)$\square 11 \div 2=5$
(Remainder 1)$5 \div 2=2$
(Remainder 1)$2 \div 2=1 \quad($ Remainder 0$)$$1 \div 2=0 \quad$ (Remainder 1)

Binary Representation: 10111
$\square 2^{4}+2^{2}+2^{1}+2^{0}=16+4+2+1=23$

Example: Decimal number 99

$\square 99 \div 2=49$
$\square 49 \div 2=24$$24 \div 2=12$
(Remainder 1)
(Remainder 1)$12 \div 2=6$$6 \div 2=3$
(Remainder 0)
(Remainder 0)
(Remainder 0)
$3 \div 2=1$$1 \div 2=0$
(Remainder 1)
(Remainder 1)

Top to Bottom
is
Right to Left
\{LSB to MSB $\}$

Binary Representation: 1100011
$2^{6}+2^{5}+2^{1}+2^{0}=64+32+2+1=99$

Prefixes for large collections

Prefixes

To more easily communicate the size of data, we use prefixes like giga- and mega-

The International System of Units (SI), also known as the metric system, defines a set of standard prefixes

These prefixes are used to describe anything that can be quantified, not just bits

Common SI Prefixes

Prefix name	Prefix symbol	Base-10 value	English word
Peta	P	10^{15}	quadrillion
Tera	T	10^{12}	trillion
Giga	G	10^{9}	billion
Mega	M	10^{6}	million
Kilo	K	10^{3}	thousand
centi	c	10^{-2}	hundredth
milli	m	10^{-3}	thousandth
micro	μ	10^{-6}	millionth
nano	n	10^{-9}	billionth
pico	P	10^{-12}	trillionth

These prefixes are used to describe anything that can be quantified, not just bits.
colorado state university

When dealing with bytes, most software is actually working in base 2, not base 10

\square If your computer tells you that a file is 1 MB in size, it is actually 1,048,576 bytes!
\square That is approximately one million, but not quite

Prefix name	Prefix symbol	Value	Base 2
Peta	P	$1,125,899,906,842,624$	2^{50}
Tera	T	$1,099,511,627,776$	2^{40}
Giga	G	$1,073,741,824$	2^{30}
Mega	M	$1,048,576$	2^{20}
Kilo	K	1024	2^{10}

\square
20

Addition

A pair of binary numbers can be added bitwise from right to left
Using the same decimal addition algorithm learned in elementary school
First, we add the two rightmost bits, also called the least significant bits (LSB) of the two binary numbers
\square Next, add the resulting carry bit to the sum of the next pair of bits
Continue this lockstep process until the two left most significant bits (MSB) are added

Adding binary numbers: Rules

$0+0=0$$\square 0+1=1$$1+0=1$$1+1=0$ with carry
\square Carry $+0+0=1$Carry $+0+1=0$ with carryCarry $+1+0=0$ with carry
\square Carry $+1+1=1$ with carry

Examples: Binary Addition

	0	0	0	1	
\#9		1	0	0	1
\#5		0	1	0	1
	0	1	1	1	0
	No Overflow				

CARRY	1	1	1	1		
		1	0	1	1	$\# 11$
		0	1	1	1	$\# 7$
	1	0	0	1	0	
		Overflow				

Addition of 11 and $7=10010_{2}=18$ (no truncation) Addition of 11 and $7=0010_{2}=2$ (with truncation to 4-bits)

Addition of 9 and $5=8+4+2=14$

Subtraction: An example

Borrow

Multiplication of binary numbers: Rules

$0 \times 0=0$$0 \times 1=0$$1 \times 0=0$$1 \times 1=1$
Multiplication: An example

Division: An example

$\square 3456 \div 12=288$

- How? Let's take a look at a long-division example

Division in binary

The basic algorithm is easier in binary because- At each step you don't have to guess how many times 12 goes into the remainder or multiply 12 by your guess to obtain the amount to subtract
\square At each step in the binary algorithm, the divisor goes into the remainder exactly zero or one times

Let's take a look at: Ob $11011 \div 0 b 11=0 b 1001$
$\square 27 \div 3=9$

30

Integer numbers are, of course, unbounded

For any given number x :
\square There are integers that are less than x and integers that are greater than x
Yet computers are finite machines that use a fixed word size for representing numbers

Word size is a common hardware term used for specifying number of bits that computers use
\square For representing a basic chunk of information - in this case, integer values
\square Typically, 8-, 16-, 32-, or 64-bit registers are used for representing integers

Word size implications

\square The fixed word size implies that there is a limit on the number of values that these registers can represent
\square For example, suppose we use 8 -bit registers for representing integers
\square This representation can code $2^{8}=256$ different things

- If we wish to represent only nonnegative integers?
- We can assign 00000000 for representing 0 ,
- 00000001 for representing 1,

■ 00000010 for representing 2,00000011 for representing 3,

- All the way up to assigning 11111111 for representing 255

Word size implications

In general, using n bits we can represent all the nonnegative integers ranging from 0 to $2^{n}-1$
\square What about representing negative numbers using binary codes? Soon ...

Representing numbers that are > maximal, or < minimal, values permitted by the fixed register size

Every high-level language provides abstractions for handling numbers that are as large or as small as we can practically want
\square For e.g., java.math.Biglnteger ($-2^{\text {Integer.MAX_VALUE }} \ldots+2^{\text {Integer.MAX_VALUE }}$)
\square Integer.MAX_VALUE $=2^{31}-1=2,147,483,647$
\square These abstractions are typically implemented by lashing together as many n-bit registers as necessary for representing the numbers
Since executing arithmetic and logical operations on multi-word numbers is a slow affair
\square It is recommended to use this practice only when the application requires processing extremely large or extremely small numbers

35

Signed Numbers

\square An n-bit binary system can code 2^{n} different things
\square If we have to represent signed (+ and -) numbers in binary code, a solution is to split the available space into two subsets
One for representing nonnegative (+) numbers, and
\square The other for representing negative (-) numbers

Desirable properties of signed number representations

Ideally, the coding scheme should be chosen such that the introduction of signed numbers

Complicates the hardware implementation of arithmetic operations as little as possible

This challenge has led to the development of several coding schemes for representing signed numbers in binary code

The solution used today in almost all computers?

\square Two's complement method, also known as radix complement
\square Example:
Consider a binary system that uses a word size of n bits
\square The two's complement binary code that represents negative x is taken to be the code that represents $2^{n}-x$
Representation of $-x \rightarrow 2^{n}-x$

Two's complement representation of 4-bit numbers	4-bit binary	Base-10	Derivation
	0000	0	
	0001	1	
	0010	2	
\square Recall, in a n-bit number system	0011	3	
	0100	4	
$\square-x \rightarrow 2^{n}-x$	0101	5	
	0110	6	
For example, in a 4-bit binary system: -7 is represented using the binary code associated with $2^{4}-7=9$ Which happens to be 1001	0111	7	
	1000	-8	$2^{4}-8=16-8=8$
	1001	- 7	$2^{4}-7=16-7=9$
	1010	- 6	$2^{4}-6=16-6=10$
	1011	- 5	$2^{4}-5=16-5=11$
	1100	-4	$2^{4}-4=16-4=12$
	1101	- 3	$2^{4}-3=16-3=13$
	1110	- 2	$2^{4}-2=16-2=14$
	1111	- 1	$2^{4}-1=16-1=15$
	tment Binary Representations \& Operations		\& Operations L3.39

Let's take a closer look at +7 and -7

$\square+7=0111$
$\square-7=1001$
$\square+7-7=0000$ (ignoring the overflow bit)

An n-bit binary system with two's complement			
representation has attractive properties	0000	0	
	0001	1	
\square The system codes 2^{n} signed numbers,	0010	2	
ranging from -2^{n-1} to ($2^{n-1}-1$)	0011	3	
	0100	4	
\square The code of any nonnegative number begins with a $\mathbf{0}$	0101	5	
	0111	7	
with	1000	-8	(16-8)
	1001	-7	(16-7)
\square To obtain the binary code of $-x$ from the	1010	-6	(16-6)
binary code of x ?	1011	-5	(16-5)
\square Flip all the bits of x and add 1 to the result	1100	-4	(16-4)
- Fip all the birs of x and add to the result	1101	-3	(16-3)
	1110	-2	(16-2)
(30) Coloraio state unversit Computer Sclence Department biarr err	1111	-1	(16-1)

41

Another attractive feature of two's complement

Subtraction is handled as a special case of addition
\square To illustrate, consider 5-7 in our 4-bit binary number system
This $5+(-7)$
$\square 0101+1001$
ロ=1110
\square Which is -2

Implications of the two's complement method?

\square The two's complement method enables adding and subtracting signed numbers
\square Using nothing more than the hardware required for adding positive numbers!
\square Every arithmetic operation, from multiplication to division to square root, can be implemented reductively using binary addition

Implications of the two's complement method?

A huge range of computer capabilities rides on top of binary additionThe two's complement method obviates the need for special hardware for adding and subtracting signed numbers

The two's complement method is one of the most remarkable and unsung heroes of applied computer science

ONE'S COMPLEMENT

Another useful concept to know ... one's complement
\square A not so successful attempt to represent signed numbers
Get to negative numbers by taking positive numbers and flipping all the bits (i.e., 1 becomes 0 and 0 becomes 1)

	Sign	2^{2}	21	2^{0}	De	mal
One's complement	0	1	1	1	+7	
	0	1	1	0	+6	
	0	1	0	1	+5	
\square Flipping each bit of	0	1	0	0	+4	
0111 (+7) yields $1000(-7)$	0	0	1	1	+3	
	0	0	1	0	+2	
	0	0	0	1	+1	
	0	0	0	0	+0	
	1	1	1	0	-1	
	1	1	0	1	-2	
	1	1	0	0	-3	
	1	0	1	1	-4	
	1	0	1	0	-5	
	1	0	0	1	-6	
	1	0	0	0	-7	
coldrado state university	Professor: SHRIDEEP PALLICKARA Computer Science Department		Binary Representations \& Operations			L3.48

One's complement: Addition is a little more complicated

End-around carry

The contents of this slide-set are based on the following references

\square Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a Modern Computer from First Principles. $2^{\text {nd }}$ Edition. ISBN-10/ ISBN-13: 0262539802 / 978-0262539807. MIT Press. [Preface, Chapter 1-2]

- Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft Better Code. ISBN-10/ ISBN-13: 1593279701/ 978-1593279707. No Starch Press. [Chapter 1]
\square Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine $2^{\text {nd }}$ Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 2]
\square Matthew Justice. How Computers Really Work: A Hands-On Guide to the Inner Workings of the Machine. ISBN-10/ISBN-13 : 1718500661/978-1718500662. No Starch Press. 2020. [Chapter 1]

