CS 250: Foundation of Computer Systems [Binary Representations \& Operations]

A number in context

Look closely ...
a 1 or a 0 in the right place
The leftmost bit to be precise
Is also a sign
Break a sequence of bits here or there
And it gives you powers
To size up who-ville or the universe's atoms
The only clarity that matters? Context
The interpretation that follows? Unambiguous

SHRIDEEP PALLICKARA
Computer Science
Colorado State University

1

Frequently asked questions from the previous class

survey

$\square \mathrm{N}!=1 \times 2 \times 3 \times \ldots \times \mathrm{N}$
\square Did long variables exist on 32-bit systems?
\square Twos complement: Conversion to decimal?

Topics covered in this lecture

Signed numbers\square Two's complement
\square One's complementFloating point numbersHexadecimal numbers

3

Announcements

Recitations are moving to CSB-3 15 [Unix Lab]Quiz etiquette
Summarizing two's complement for an n-bit binary system

\square The system codes 2^{n} signed numbers, ranging from -2^{n-1} to ($2^{n-1}-1$)
\square The code of any nonnegative number begins with a 0
\square The code of any negative number begins with a 1Representation of $-x \rightarrow 2^{n}-x$
\square To obtain the binary code of $-x$ from the binary code of x ?
Flip all the bits of \boldsymbol{x} and add 1 to the result

5

Let's consider an 8-bit binary system and two's complement

The system codes 2^{n} signed numbers, ranging from -2^{n-1} to ($2^{n-1}-1$) i.e., from -2^{8-1} to $\left(2^{8-1}-1\right)$ or -2^{7} to $\left(2^{7}-1\right)$

Let's look at the number -42
Method-1: $-42 \rightarrow 2^{8}-42=214=0 b 11010110$
Method-2: Flip all bits of x and add 1 to the result

- 42 =0b00101010
- Flips the bits: Obl 1010101
- Add 1: Obl 1010110

Converting 2 s complement to decimal (or denary)

Obl1010110

\square The weight for the leftmost digit is negative
$\square 1 \times-2^{7}+1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
$\square-128+64+0+16+0+4+2+0$
ロ-128+86
$\square-42_{10}$

ONE'S COMPLEMENT

Another useful concept to know ... one's complement
\square A not so successful attempt to represent signed numbers
Get to negative numbers by taking positive numbers and flipping all the bits (i.e., 1 becomes 0 and 0 becomes 1)

9

One's complement	Sign	2^{2}	21	2^{0}	Decimal
	0	1	1	1	+7
	0	1	1	0	+6
\square Flipping each bit of 0111 (+7) yields 1000 (\square Has two different representations for zero	0	1	0	1	+5
	0	1	0	0	+4
	0	0	1	1	+3
	0	0	1	0	+2
	0	0	0	1	+1
	0	0	0	0	+0
	1	1	1	0	-1
	1	1	0	1	-2
	1	1	0	0	-3
	1	0	1	1	-4
	1	0	1	0	-5
	1	0	0	1	-6
	1	0	0	0	-7
coldrado state university	Professor: SHRIDEEP PALIICKARA Computer Science Department		Binary Representations		L4.10

10

CS250: Foundations of Computer Systems Dept. Of Computer Science, Colorado State University

One's complement: Addition is a little more complicated

End-around carry

General-purpose computers are built to solve general-purpose problems

Which involve a wide range of numbers
\square You can get an idea of this range by skimming a physics textbook
\square There are tiny numbers such as Planck's constant (6.63×10^{-34} jouleseconds) and
\square Huge numbers such as Avogadro's constant (6.02×10^{23} molecules/mole)
\square This is a range of 10^{57}, which comes out to about 2^{191}

- That's almost 200 bits!

Bits just aren't cheap enough to use a few hundred of them to represent every number, so we need a different approach

Look to what we have done in the past

Scientific notation represents a large range of numbers by (how else?) creating a new context for interpretation
\square It uses a number with a single digit to the left of the decimal point, called the mantissa, multiplied by 10 raised to some power, called the exponent

Floating points

\square Computers use the same system, except that the mantissa and exponent are binary numbers and 2 is used instead of 10

This is called the floating point representation

More on the scientific notation: Let's come up with a

 representation$$
\pm \square . \square \mathrm{e} \pm \square
$$

A value like 9,876,543,210 would be approximated with 9.88×10^{9} (or $9.88 \mathrm{e}+9$ in programming language notation)

Scientific notation complicates arithmetic somewhat

\square When adding and subtracting two numbers in scientific notation, you must adjust the two values so that their exponents are the same
\square For example, when adding 1.23 e 1 and 4.56 e 0 , you could convert 4.56 e 0 to 0.456 e 1 and then add them
\square The result ($1.23 \mathrm{e} 1+0.456 \mathrm{e} 1=1.686 \mathrm{e} 1)$, does not fit into the three significant digits of our current format (in the previous slide)
\square So, we must either round or truncate the result to three significant digits - Rounding generally produces the more accurate result, so let's round to obtain 1.69el

The implications of such adjustments?

The lack of precision (the number of digits or bits maintained in a computation) affects the accuracy (the correctness of the computation)

Floating point representation: Binary version of the scientific notation to represent a wide range of numbers

\square The naming convention is confusing because the binary (or decimal) point is always in the same place
\square Between the ones and halves (tenths in decimal)

- The "float" is just another way of saying "scientific notation," which allows us to write 1.2×10^{-3} instead of 0.0012

By separating the significant digits from the exponents
\square The floating-point system allows us to represent very small or very large numbers without having to store all those zeros

IEEE 754 Floating standard

When Intel planned to introduce a floating-point unit (FPU) for its original 8086 microprocessor?
\square Intel knew their electrical engineers and solid-state physicists didn't have the numerical analysis background to design a good floating-point representation
Went out and hired the best numerical analyst they could find to design a floatingpoint format for its 8087 FPU
\square That person then hired two other experts in the field, and the three of them (Kahan, Coonen, and Stone) designed the KCS Floating-Point Standard
\square They did such a good job that the IEEE organization used this format as the basis for the IEEE Std 754 floating-point format

The floating-point system is the standard way to represent real numbers in computingThere are two signs:
\square One for the mantissa and one for the exponent (hidden)
\square There are also a lot of tricks to make sure that things like rounding work as well as possible and to minimize the number of wasted bit combinations

The mantissa and the exponent

\square The mantissa is a base value that usually falls within a limited range (for example, between 0 and 1)
\square The exponent is a multiplier that, when applied to the mantissa, produces values outside this range
\square The big advantage of the mantissa/exponent configuration \square Floating-point format can represent values across a wide range

IEEE Floating point number formats

A couple of the tricks that are used in the standard

\square Normalization, which adjusts the mantissa so that there are no leading (that is, on the left) zeros

A second trick, from Digital Equipment Corporation (DEC), doubles the accuracy
\square By throwing away the leftmost bit of the mantissa since we know that it will always be 1, which makes room for one more bit

Exponent values of all $0 s$ and all 1 s would have special meaning

Two types of floating point numbers: Single and double-precision

Single-precision numbers use 32 bits and can represent numbers approximately in the range $\pm 10^{ \pm 38}$ with about 7 digits of accuracy
\square Although there is an infinite number of values between 1 and 2, we can represent only 8 million (2^{23}) of them because we use a 23 -bit mantissa - Therefore, have only 23 bits of precision

Double-precision numbers use 64 bits and can represent a wider range of numbers, approximately $\pm 10 \pm 308$, with about 15 digits of accuracy
Number of atoms in the known universe is between $10^{78} \sim 10^{82}$

IEEE 754 also uses some special bit patterns

\square To represent things like division by zero, which evaluates to positive or negative infinity

It also specifies a special value called NaN , which stands for "not a number"

- If you find yourself in the NaNny state, it probably means that you did some illegal arithmetic operation

Let's look at a number with a decimal point

$\square 0.15625$We will compute its binary representation

Unlike the division (by 2) that we did for number left of the decimal point

During conversions, for numbers to the right of the decimal, we will multiply 2
$\square 0.15625_{10}$

$0.15625 \times 2=0.3125$	0
$0.3125 \times 2=0.625$	0
$0.625 \times 2=1.250$	1
$0.250 \times 2=0.500$	0
$0.500 \times 2=1.000$	1

$0.15625_{10}=0.00101_{2}$

$\square 0.00101_{2}=1.01 \times 2^{-3}$
\square Fraction is .01 and the exponent is -3The number is positive
\square In the IEEE-754 standard, the exponent is written as a biased exponent In single-precision, you need to add 127

- -3 would be written as $-3+127=124_{10}=01111100_{2}$

In double-precision you need to add 1023

Representation of $0.15625_{10}=0.00101_{2}$ in IEEE-
 754 single precision

$0.00101_{2}=1.01 \times 2^{-3}$The number is positiveExponent is written as a biased exponent: 01111100_{2}We only write the fractional part (the 1 in 1.01 is implied) i.e., 01 and then pad zeros all the way to the right

NaN and Infinity

The biased-exponent field is filled with all 1 bits to indicate either- Infinity mantissa field $=0$
$\square \mathrm{NaN}$ mantissa field $\neq 0$

32

Hexadecimal

\square Hexadecimal is base 16!
\square Given what we've already seen so far, you probably know what that meansHexadecimal, or just hex for short, is a place-value system where
Each place represents a power of 16
\square and each place can be one of 16 symbols

Hexadecimal number representation

As in all place-value systems, the rightmost place will still be the ones place
\square The next place to the left will be the sixteens place, then the 256 s (16 $\times 16)$ place, then the 4,096 s $(16 \times 16 \times 16)$ place, and so on

Simple enough!

But what about the other requirement that each place can be one of 16 symbols?

We usually have ten symbols to use to represent numbers, 0 through 9
\square We need to add six more symbols to represent the other values

But what about the other requirement that each place can be one of 16 symbols?
\square We could pick some random symbols like \& @ \#, but these symbols have no obvious order
\square Instead, the standard is to use A, B, C, D, E, and F
Either uppercase or lowercase is fine!
\square In this scheme, A represents ten, B represents eleven, and so on, up to F, which represents fifteen

37

Consider the number 0×1 A5 in hexadecimal

\square What's the value of this number in decimal?
\square The rightmost place is worth 5The next place has a weight of 16 , and there's an A there, which is 10 in decimal, so the middle place is worth $16 \times 10=160$The leftmost place has a weight of 256 , and there's a 1 in that place, so that place is worth 256The total value then is $256+160+5=421$ in decimal

Conversion from decimal to hex

\square The hex number is constructed from right to left
\square Step 1: Divide the decimal number by 16 and note down the remainder
\square Step 2: Divide the obtained quotient by 16, and note remainder again
\square Step 3: Repeat the above steps until you get 0 as the quotient Stopping criteria

Example: Decimal number 421

$\square 421 \div 16=26 \quad$ (Remainder 5)$26 \div 16=1 \quad$ (Remainder 10 or $\mathbf{A})$$1 \div 16=0 \quad$ (Remainder 1)

Hex representation: 0x1A5
口 $=1 * 256+10 * 16+1 * 5$
$\square=256+160+5$
$\square=421$ in decimal

Some conversions across number systems

	Example 1	Example 2
Binary	1111000000001111	1000100010000001
Hexadecimal	FOOF	8881
Decimal	61,455	34,945

43

Why binary logic matters

\square Every digital device - be it a PC, a cell phone, or a network router - is based on chips designed to store and process binary information
\square Although these chips come in different shapes and forms, they are all made of the same building blocks: elementary logic gates
\square The gates can be physically realized using many different hardware technologies

But their logical behavior, or abstraction, is consistent across all implementations

We've looked at using binary to represent data, but computers do more than simply store data

\square Binary allows us to work with data as well
\square Computers give us the capability to process data using hardware that we can program to execute a sequence of simple instructions

- Instructions like "add two numbers together" or "check if two values are equal"

Computer processors that implement these instructions are fundamentally based on binary logic
\square A system for describing logical statements where variables can only be one of two values - true or false

Why is binary a natural fit for logic?

\square Typically, when someone speaks of logic, they mean reasoning, or thinking through what is known in order to arrive at a valid conclusion

When presented with a set of facts, logic allows us to determine whether another related statement is also factual
\square Logic is all about truth - what is true, and what is false
Likewise, a bit can only be one of two values, 1 or 0
\square Therefore, a single bit can be used to represent a logical state of true (1) or false (0)

Let's consider the logical statements for a rectangle

\square If the shape does not have four sides and does not have four right angles
$\square \mathrm{lt}$ is not a rectangle
\square If the shape does not have four sides and does have four right angles
\square It is not a rectangle
\square If the shape does have four sides and does not have four right angles
\square It is not a rectangle
\square If the shape does have four sides and does have four right angles
\square It is a rectangle!

Let's put those statements in table

Four sides	Four right angles	Is a rectangle
False	False	False
False	True	False
True	False	False
True	True	True

What's so special about this table?

This type of table is known as a truth tableA truth table shows all the possible combinations ofConditions (inputs) and
\square Their logical conclusions (outputs)Our previous table was written specifically for our statement about a rectangle, but ...
\square The same table applies to any logical statement joined with AND

Let's represent false as 0 and true as a 1

x	y	x And y
0	0	0
0	1	0
1	0	0
1	1	1

Let's look at another example: OR

Say you work at a shop that gives a discount to only two types of customers:
\square Children

- People wearing sunglasses
\square No one else is eligible for a discount
\square If you wanted to state the store's policy as a logical expression, you could say the following:
\square GIVEN the customer is a child
\square OR GIVEN the customer is wearing sunglasses
\square I CONCLUDE that the customer is eligible for a discount

The OR Truth Table

x	y	x Or y
0	0	0
0	1	1
1	0	1
1	1	1

53

Logic Operations

\square One use of bits is to represent the answers to yes/no questions such as "Is it cold?" or "Do you like my hat?"
\square We use the terms true for yes and false for no
\square Questions like "Where's the party?" don't have a yes/no answer and can't be represented by a single bit
\square We often combine several yes/no clauses into a single sentence \square We might say, "Wear a coat if it is cold or if it is raining" or "Go skiing if it is snowing and it's not a school day"

Logic Operations

Another way of saying those things might be
口 "Wear coat is true if cold is true or raining is true" and "Skiing is true if snowing is true and school day is not true"
\square These are logic operations that each produce a new bit based on the contents of other bits

Boolean Functions

\square A boolean function is a function that operates on binary inputs and returns binary outputs

Since computer hardware is based on representing and manipulating binary values ...
\square Boolean functions play a central role in the specification, analysis, and optimization of hardware architectures

Every Boolean function can be defined using two alternative representations

\square First, we can define the function using a truth table
For each one of the 2^{n} possible tuples of input variable values, the table lists the value of $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
\square Can be thought of as a data-driven definition
In addition to this data-driven definition, we can also define Boolean functions using Boolean expressions
\square For example: (x Or y) And Not (z)

Boolean Algebra

Algebra is a set of rules for operating on numbers
Boolean algebra manipulates two-state binary values that are typically labeled true/false, 1/0, yes/no, on/off, and so forth

We will use 1 and 0

Boolean Algebra

Boolean algebra, invented in the 1800s by English mathematician George Boole, is a set of rules that we use to operate on bits

As with regular algebra: the associative, commutative, and distributive rules also apply
$\square x{ }^{*} y=y$ * $x \quad$ Commutative
$\square(x * y) * z=x *(y * z) \quad$ Associative
$\square x *(y+z)=x^{*} y+x^{*} z \quad$ Distributive

The contents of this slide-set are based on the following references

\square Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a Modern Computer from First Principles. 2 ${ }^{\text {nd }}$ Edition. ISBN-10/ ISBN-13: 0262539802 / 9780262539807. MIT Press. [Preface, Chapter 1-2]
\square Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft Better Code. ISBN-10/ISBN-13: 1593279701/978-1593279707. No Starch Press. [Chapter 1]
\square Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine $2^{\text {nd }}$ Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 2]
\square Matthew Justice. How Computers Really Work: A Hands-On Guide to the Inner Workings of the Machine. ISBN-10/ISBN-13: 1718500661/978-1718500662. No Starch Press. 2020. [Chapter 1]
\square https://en.wikipedia.org/wiki/IEEE_754

