CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

CS250: FOUNDATIONS OF COMPUTER SYSTEMS
[BOOLEAN LOGIC & ALGEBRA]

The Janus-faced Boolean Function
One side a truth table
The other an expression

Like snowflakes
Every truth table is unique
Expressions? Dime a dozen

Fueled by Boolean algebra SHRIDEEP PALLICKARA

Many an expression Com pufer Science
Gets you to your truth table destination

Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

In IEEE 754 why use a biased exponent (e.g., 127 for 32-bit, 1023 for 64-
bit)2 Why not use negative numbers for the exponents2 Why not use two's
complement for the exponent?

A small, negative-exponent number might appear as a large binary string (due to
leading 1s), causing simple integer comparison algorithms to fail

By adding a bias (127) for single precision), the range of exponents is shifted into
a strictly non-negative range (1 to 254).

Lists of floating-point numbers can be sorted using standard integer sorting
algorithms without needing to unpack the exponent, mantissa, and sign

What so special about have having these floating point numbers?
Why have different versions of floating point numbers?
How should | take notes?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

How should | take notes?
Transcription is not a learning strategy

Print the slide notes (or pull them up side-by-side) so you’re not racing to
copy text

Use class time to listen and think, & not to become a human photocopier

Annotate directly on the notes: circle key ideas, add examples, write
“why this works” in the margins

Write only what’s new: questions, confusions, edge cases, and the one
line you’ll want to remember later

How does this help? Calmer pacing in-class and better studying later

Your notebook becomes a commentary ... not a transcript

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.3

3

Coding Exam

VS Code is the only allowed IDE
All Al assists will be disabled

Only accessible website will be for JavaDocs

For example, Google searches will not be allowed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Boolean Logic

Boolean Algebra
Not, Or, and And

Xor
Nand
COLORADO STATE UNIVERSITY ggﬁlisqujEsRHg)éTESQECBER;ARTMENT BooLeaN Locic & ALGEBRA L5.5

5

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

And the whole setup is just a trap to capture escaping
logicians. None of the doors actually lead out.

Labyrinth Puzzle; xked. BOOLEAN LOGIC

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Let’s consider the logical statements for a rectangle

If the shape does not have four sides and does not have four right
angles

It is not a rectangle

If the shape does not have four sides and does have four right angles
It is not a rectangle

If the shape does have four sides and does not have four right angles
It is not a rectangle

If the shape does have four sides and does have four right angles

It is a rectangle!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA Ls.7

7

Instead of arguing about English, we’ll list every
possible case and let the logic answer us

Let’s put those statements in table

Four sides Four right angles Is a rectangle
False False False
False True False
True False False
True True True
COLORADO STATE UNIVERSITY (oo o e mvent BOOLEAN LOGIC & ALGEBRA L5.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

What's so special about this table?

This type of table is known as a truth table

A truth table shows all the possible combinations of
Conditions (inputs) and

Their logical conclusions (outputs)

Our previous table was written specifically for our statement about a
rectangle, but ...

The same table applies to any logical statement joined with AND

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CompuTeR SCIENCE DEPARTMENT BooLEAN LoGiC & ALGEBRA L59
9
7 [7 1)
Computers don'’t store ‘true’ and ‘false’ (they store
7 ° ° °
voltages) we’ll translate logic into bits: O and 1
Let’s represent false as O and true as a 1
X X And y
0 (0] 0
0 1 0
1 0 0
1 1 1
AND is the ‘all conditions must hold’ policy;
OR is the ‘any one condition qualifies’ policy
COLORADO STATE UNIVERSITY (oo o e mvent BOOLEAN LOGIC & ALGEBRA L5.10
10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Let’s look at another example: OR

Say you work at a shop that gives a discount to only two types of
customers:
Children

People wearing sunglasses
No one else is eligible for a discount

If you wanted to state the store’s policy as a logical expression, you could
say the following:

GIVEN the customer is a child
OR GIVEN the customer is wearing sunglasses
| CONCLUDE that the customer is eligible for a discount

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.11

11

The OR Truth Table
x y X Ory
0 0 0
0 1 1
1 0 1
1 1 1
COLORADO STATE UNIVERSITY (oo o e mvent BOOLEAN LOGIC & ALGEBRA L5.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.6

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

h

BOOLEAN ALGEBRA ~hen

ao By logic we prove, by intuition we discover.
) I \/\ V\ ** —Henri Poincaré (1854-1912)

Logic Operations

-1 One use of bits is to represent the answers to yes/no questions such as
“Is it cold?” or “Do you like my hate”

We use the terms true for yes and false for no

-1 Questions like “Where’s the party?” don’t have a yes/no answer and
can’t be represented by a single bit

"I We often combine several yes/no clauses into a single sentence

We might say, “Wear a coat if it is cold or if it is raining” or “Go skiing if it
is snowing and it’s not a school day”

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Logic Operations

Another way of saying those things might be

“Wear coat is true if cold is true or raining is true” and “Skiing is true
if snowing is true and school day is not true”

These are logic operations that each produce a new bit based on the
contents of other bits

Once we encode each yes/no clause as a bit, the whole sentence
becomes a function from input bits to an output bit

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.15

15

Boolean Functions

A boolean function is a function that operates on binary inputs and
returns binary outputs

Since computer hardware is based on representing and manipulating
binary values ...

Boolean functions play a central role in the specification, analysis, and
optimization of hardware architectures

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Every Boolean function can be defined using two
alternative representations

First, we can define the function using a truth table

For each one of the 2" possible tuples of input variable values, the table lists
the value of f(vq, vo, ..., Vi)

Can be thought of as a data-driven definition

In addition to this data-driven definition, we can also define Boolean
functions using Boolean expressions

For example: (x Or y) And Not (z)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.17

17

Boolean Algebra [1/2]

Algebra is a set of rules for operating on numbers

Boolean algebra manipulates two-state binary values that are
typically labeled true /false, 1/0, yes/no, on/off, and so forth

We will use 1 and O

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Boolean Algebra [2/2]

11 Boolean algebra, invented in the 1800s by English mathematician
George Boole, is a set of rules that we use to operate on bits

01 As with regular algebra: the commutative, associative, and distributive
rules also apply

ox*y=y*x Commutative
O(x*xy)*z=xx*(y * z) Associative
ox ok (y +z) = x*y + x*z Distributive
COLORADO STATE UNIVERSITY ggfn:;ss;:Estg)cE;TE;?:LECIS?ER;ARTMENT BooLeaN Locic & ALGEBRA L5.19

19

Where do you go?
Are you looking for answers
To questions under the stars?
Well, if along the way
You are grown weary

an re

e Matthews B

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Boolean Operations

There are three basic Boolean operations
Not, And, and Or

Composite operations: Xor (short for “exclusive-or”), Nand, and Nor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.21

21

NOT: This operation means “the opposite”

For example, if a bit is false, NOT that bit would be true
If a bit is true, NOT that bit would be false

X Not x
A—DO—Q 0 1
0

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

AND: This operation involves 2 or more bits

In a 2-bit operation, the result is true only if both the first AND second
bit are true
When more than 2 bits are involved, the result is true only if all bits

are true
X X And y
0 0 0
A— 0 1 0
Q
B 1 0 0
1 1 1
COLORADO STATE UNIVERSITY COunSTen SUENGE DEPARTMENT BoOLEAN LOGIC & ALGEBRA L5.23
23
OR: This operation also involves 2 or more bits
In a 2-bit operation, the result is true if the first OR second bit is true;
otherwise, the result is false
With more than 2 bits, the result is true if any bit is true
x X Ory
A 0 0 0
Q 0 1 1
B
1 0 1
1 1 1
COLORADO STATE UNIVERSITY (oo o e mvent BOOLEAN LOGIC & ALGEBRA L5.24
24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Xor: Also known as Exclusive-OR

The result of an exclusive-or operation is true if the first and second bits have
different values

It's either but not both

Because “exclusive-or” is a mouthful, we often use the abbreviation Xor
(pronounced “ex-or”)

X X Xory
0 0 0
A
Q 0 '
B 1 0 1
1 1 0
COLORADO STATE UNIVERSITY G0t e e e oARTMENT BoOLEAN LOGIC & ALGEBRA L5.25
25
Nand: This operation involves 2 or more bits
The name of the Nand operator is shorthand for Not-And, coming from
the observation that Nand (x, y) is equivalent to Not (And (x, y))
Pipes the output of the And gate through a Not gate
X y X And y X Nand y
A — 0 0 0 1
Q 0
B — 0 1 1
1 0 0 1
1 1 1 0
COLORADO STATE UNIVERSITY (oo o e mvent BOOLEAN LOGIC & ALGEBRA L5.26
26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

What makes And, Or, and Not more interesting, or
privileged, than any other subset of Boolean operators?

The short answer is that indeed there is nothing special about And, Or,
and Not

A deeper answer is that various subsets of logical operators can be
used for expressing any Boolean function, and {And, Or, Not} is one
such subset

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.27

27

What makes And, Or, and Not more interesting, or
privileged, than any other subset of Boolean operators?

If you find this claim impressive, consider this: any one of these three
basic operators can be expressed using yet another operator: Nand

The name of the Nand operator is shorthand for Not-And, coming from the
observation that Nand (x, y) is equivalent to Not (And (x, Yy))

Now, that’s impressive!

It follows that any boolean function can be realized using Nand
gates only

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

TRUTH TABLES AND~BOOLEANS
EXPRESSIONS

Representing a Boolean function using truth tables
and Boolean expressions
(B
x y z f(x,y,z) = (x Or y) And Not(z)
0 0 0 0
0 0 1 0
0 1 0 1 The truth table is the destination;
0o 1 1 0 the expression is your choice of
1 0O ©0 1 scenic route
1 0 1 0
1 1 0 1
1 1 1 0
COLORADO STATE UNIVERSITY (oo o O RTMENT BOOLEAN LOGIC & ALGEBRA L5.30
30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Truth Tables and Boolean Expressions [1/2]

Given a Boolean function of n variables represented by a Boolean
expression, we can always construct from it the function’s truth table

We simply compute the function for every set of values (row) in the
table

This construction is laborious, and obvious

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.31

31

Truth Tables and Boolean Expressions [2/2]

At the same time, the dual construction is not obvious at all:

Given a truth table representation of a Boolean function, can we
always synthesize from it a Boolean expression for the underlying
function?

The answer to this intriguing question is Yes!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

When it comes to building computers

The truth table representation, the Boolean expression, and the ability
to construct one from the other are all highly relevant

This isn’t just math elegance; this is the daily workflow of hardware
design:

Specify behavior, synthesize logic, and then simplify

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.33

33

Suppose that we are called to build some hardware
for sequencing DNA data

Our domain-expert biologist wants to describe the sequencing logic
using a truth table

Our job is to realize this logic in hardware

With the truth table data as a point of departure, we can synthesize
from it a Boolean expression that represents the underlying function

After simplifying the expression using Boolean algebra, we can proceed to
implement it using logic gates

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Truth table vs Boolean Expression

A truth table is often a convenient means for describing some states of
nature

Whereas a Boolean expression is a convenient formalism for

realizing this description in silicon

The ability to move from one representation to the other is one of the
most important practices of hardware design

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.35

35

Although the truth table representation of a Boolean
function is unique

Every Boolean function can be represented by many different yet
equivalent Boolean expressions

And some will be shorter and easier to work with
For example, the expression:

(Not (x And y) And (Not (x) Or y) And (Not (y) Or y))

Is equivalent to the expression Not (x)

The ability to simplify a Boolean expression is the first step toward
hardware optimization

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Still round the corner there may wait, a
new road or a secret gate.
J. R. R. Tolkien

Gates
|

1 A gate is a physical device that implements a simple Boolean function

1 Most digital computers today use electricity to realize gates and
represent binary data

Today, gates are typically implemented as transistors etched in silicon,
packaged as chips

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Lots of “can do” implementations of gates also exist
alongside practical ones

Any alternative technology permitting switching and conducting
capabilities can be employed

Over the years, many hardware implementations of Boolean functions
were created

Including magnetic, optical, biological, hydraulic, pneumatic, quantum-based,
and even domino-based mechanisms

Many of these implementations are whimsical “can do” feats

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.39

39

Implication of switching technologies and Boolean
algebra [1/2]

The availability of alternative switching technologies, on the one hand,
and the observation that Boolean algebra can be used to abstract the
behavior of logic gates, on the other, is extremely important

Implies that computer scientists don’t have to worry about physical
artifacts like electricity, circuits, switches, relays, and power sources

This is the payoff of abstraction: once behavior is captured in Boolean
algebra, the physical substrate becomes an implementation detail

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Implication of switching technologies and Boolean
algebra [2/2]

Allows computer scientists to be content with the abstract notions of
Boolean algebra and gate logic

Trusting blissfully that someone else (physicists and electrical engineers)
will figure out how to actually realize them in hardware

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.41

41

Primitive Gates as black boxes

Primitive gates can be viewed as black box devices that implement
elementary logical operations

A— A
N Q A) or Q AQ

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Composite gates

Since all logic gates have the same input and output data types (0’s
and 1’s), they can be combined, creating composite gates of
arbitrary complexity

For example, suppose we are asked to implement the three-way
Boolean function And (q, b, c), which returns 1 when every one of its
inputs is 1, and O otherwise

Using Boolean algebra, we can begin by observing that a.b.c = (a.b).c

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.43

43

Next, we can use this result to construct the
composite gate

Gate Interface Gate Implementation

a : ;
] !

b And out i And ’

o b _E_ DE—

if (a==b==c==1) set out =1
else set out = 0

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.22

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Let us consider another logic design example: Xor

By definition, Xor (a, b) is 1 exactly when either ais 1 and b is O or a
is O and b is 1
Said otherwise, Xor (a,b) = Or (And (a, Not(b)), And (Not (a), b))

Gate Interface

out

a a Xor b

0 0 0]

0 1 1 b

1 0 1 Gate Implementation

1 T 0 e mer BomowloocaAcm s

45

Note that the interface of any given gate is unique:
there is only one way to specify it

This is normally done using a truth table, a Boolean expression, or a
verbal specification
This interface, however, can be realized in many different ways
Some will be more elegant and efficient than others
For example, the Xor implementation we saw in the previous slide is
one possibility
There are more efficient ways to realize Xor, using less logic gates and less

inter-gate connections

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.23

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Functionality vs Efficiency

From a functional standpoint, the fundamental requirement of logic
design is that the gate implementation will realize its stated interface

One way or another

From an efficiency standpoint, the general rule is to try to use as few
gates as possible, since fewer gates imply less cost, less energy, and
faster computation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L5.47

47

Art of Logic Design: Abstraction to Implementation

Given a gate abstraction (also referred to as specification, or
interface) ...

Find an efficient way to implement it using other gates that were
already implemented

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L5.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.24

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

De Morgan’s Law
|

that applies only to Boolean algebra

The eponymous De Morgan’s law

01 This law states that the operation
Not (x And y) = Not(x) Or Not(y)

Not (x Or y) = Not(x) And Not(y)

Especially when we want to swap ANDs for ORs (or vice versa)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GoupUTER SOIENGE DEPARTMENT BOOLEAN LOGIC & ALGEBRA

01 In the 1800s, British mathematician Augustus De Morgan added a law

1 De Morgan’s Law is one of our first ‘power tools’ for rewriting circuits

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.25

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Another way of stating this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA

Not (A Or B) = Not(A) And Not(B) A U B — AN B
Not (A And B) = Not{A)OrNot(B) AN B = AU B

51

Not (x And y) = Not(x) Or Not(y)

Replacing And operations with Or
Also: x And y = Not (Not(x) Or Not(y))

X y X Andy | Not(x Andy) X Y | Notx | Noty | Not(x)Or Not (y)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 1
° T o 0 1
1 1 1 (o}
1 1 0 0

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LogIC & ALGEBRA

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.26

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Not (x Or y) = Not(x) And Not(y)

Replacing Or operations with And
x Or y = Not (Not(x) And Not(y))

X y XOry Not(x Or) X y Notx | Noty | Not(x) And Not(y)
0 0 ! 0 0 1 1 1
]] ° 0 1 1 0 0
1 0 1 0 — " : .
1 1 1 0]] 5 5 5
COLORADD STATE UNIVERSITY (onSr M Booemlooc&Acesa 1589
53
The contents of this slide-set are based on the
following references
Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a
Modern Computer from First Principles. 2" Edition. ISBN-10/ ISBN-13: 0262539802
/ 978-0262539807. MIT Press. [Chapter 1-2, Appendix A]
Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft
Better Code. ISBN-10/ ISBN-13 : 1593279701/ 978-1593279707. No Starch
Press. [Chapter 2]
COLORADO STATE UNIVERSITY (oo o e mvent BOOLEAN LOGIC & ALGEBRA L5.54
54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.27

