CS250: Foundations of Computer Systems [Boolean Logic \& Algebra]

The Janus-faced Boolean Function

One side a truth table
The other an expression
Like snowflakes
Every truth table is unique
Expressions? Dime a dozen
Fueled by Boolean algebra Many an expression

Gets you to your truth table destination

SHRIDEEP PALLICKARA
Computer Science
Colorado State University

1

Frequently asked questions from the previous class

survey

\square How do we know where the fractional places begin?
\square Why should we care about the IEEE 754 floating point standard?Why do we multiply by 2 for the decimal side during conversions of numbers like 0.350 etcHow does the circuitry know its deal with a floating point number vs a vanilla whole number?Why use hexadecimal?How should I study?

Topics covered in this lecture

Boolean Algebra
\square Not, Or, and And

- Xor
\square Nand

3

Why is binary a natural fit for logic?

\square Typically, when someone speaks of logic, they mean reasoning, or thinking through what is known in order to arrive at a valid conclusion

When presented with a set of facts, logic allows us to determine whether another related statement is also factualLogic is all about truth - what is true, and what is falseLikewise, a bit can only be one of two values, 1 or 0
\square Therefore, a single bit can be used to represent a logical state of true (1) or false (0)

5

Let's consider the logical statements for a rectangle

\square If the shape does not have four sides and does not have four right angles
\square It is not a rectangle
\square If the shape does not have four sides and does have four right angles
$\square \mathrm{It}$ is not a rectangle
\square If the shape does have four sides and does not have four right angles
$\square \mathrm{It}$ is not a rectangle
\square If the shape does have four sides and does have four right angles
\square It is a rectangle!

Let's put those statements in table

Four sides	Four right angles	Is a rectangle
False	False	False
False	True	False
True	False	False
True	True	True

What's so special about this table?

\square This type of table is known as a truth table
A truth table shows all the possible combinations of
\square Conditions (inputs) and
\square Their logical conclusions (outputs)
\square Our previous table was written specifically for our statement about a rectangle, but ...
\square The same table applies to any logical statement joined with an AND

Let's represent false as 0 and true as a 1

x	y	x And y
0	0	0
0	1	0
1	0	0
1	1	1

9

Let's look at another example: OR

\square Say you work at a shop that gives a discount to only two types of customers:
\square Children
\square People wearing sunglasses
\square No one else is eligible for a discount
If you wanted to state the store's policy as a logical expression, you could say the following:
\square GIVEN the customer is a child
\square OR GIVEN the customer is wearing sunglasses

- I CONCLUDE that the customer is eligible for a discount

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

The OR Truth Table

x	y	x Or y
0	0	0
0	1	1
1	0	1
1	1	1

12

Logic Operations

\square One use of bits is to represent the answers to yes/no questions such as "Is it cold?" or "Do you like my hat?"
\square We use the terms true for yes and false for no
\square Questions like "Where's the party?" don't have a yes/no answer and can't be represented by a single bit

We often combine several yes/no clauses into a single sentence \square We might say, "Wear a coat if it is cold or if it is raining" or "Go skiing if it is snowing and it's not a school day"

Logic Operations

Another way of saying those things might be

- "Wear coat is true if cold is true or raining is true" and "Skiing is true if snowing is true and school day is not true"
\square These are logic operations that each produce a new bit based on the contents of other bits

Boolean Functions

A boolean function is a function that operates on binary inputs and returns binary outputs

Since computer hardware is based on representing and manipulating binary values ...
\square Boolean functions play a central role in the specification, analysis, and optimization of hardware architectures

Every Boolean function can be defined using two alternative representations

First, we can define the function using a truth table
\square For each one of the 2^{n} possible tuples of input variable values, the table lists the value of $f\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
\square Can be thought of as a data-driven definition

In addition to this data-driven definition, we can also define Boolean functions using Boolean expressions

For example: (x Or y) And Not (z)

Boolean Algebra

Algebra is a set of rules for operating on numbers
Boolean algebra manipulates two-state binary values that are typically labeled true/false, 1/0, yes/no, on/off, and so forthWe will use 1 and 0

Boolean Algebra

Boolean algebra, invented in the 1800s by English mathematician George Boole, is a set of rules that we use to operate on bits

As with regular algebra: the associative, commutative, and distributive rules also apply
$\square x * y=y * x \quad$ Commutative
$\square(x * y) * z=x *(y * z) \quad$ Associative
$\square x *(y+z)=x^{*} y+x^{*} z \quad$ Distributive

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

Where do you go?
Are you looking for answers
To questions under the stars?
Well, if along the way
You are grown weary
You can rest with me until
A brighter day and you're okay
Where Are You Going, Dave Matthews Band

Boolean Operations

```
Computer Science Department
```


Boolean Operations

\square There are three basic Boolean operations
Not, And, and Or
Composite operations: Xor (short for "exclusive-or"), Nand, and Nor

NOT: This operation means "the opposite"

For example, if a bit is false, NOT that bit would be true

- If a bit is true, NOT that bit would be false

x	Not \boldsymbol{x}
0	1
1	0

AND: This operation involves 2 or more bits

\square In a 2-bit operation, the result is true only if both the first AND second bit are true
\square When more than 2 bits are involved, the result is true only if all bits are true

x	y	x And y
0	0	0
0	1	0
1	0	0
1	1	1

OR: This operation also involves 2 or more bits

In a 2-bit operation, the result is true if the first OR second bit is true; otherwise, the result is falseWith more than 2 bits, the result is true if any bit is true

x	y	x Or \boldsymbol{y}
0	0	0
0	1	1
1	0	1
1	1	1

Xor: Also known as Exclusive-OR

\square The result of an exclusive-or operation is true if the first and second bits have different values

- It's either but not both
\square Because "exclusive-or" is a mouthful, we often use the abbreviation Xor (pronounced "ex-or")

x	y	x Xor y
0	0	0
0	1	1
1	0	1
1	1	0

Nand: This operation involves 2 or more bits

The name of the Nand operator is shorthand for Not-And, coming from the observation that $\operatorname{Nand}(x, y)$ is equivalent to $\operatorname{Not}(\operatorname{And}(x, y))$
\square Pipes the output of the And gate through a Not gate

x	y	x And y	x Nand y
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

What makes And, Or, and Not more interesting, or privileged, than any other subset of Boolean operators?

The short answer is that indeed there is nothing special about And, Or, and Not
\square A deeper answer is that various subsets of logical operators can be used for expressing any Boolean function, and \{And, Or, Not\} is one such subset

What makes And, Or, and Not more interesting, or privileged, than any other subset of Boolean operators?

\square If you find this claim impressive, consider this: any one of these three basic operators can be expressed using yet another operator-Nand
\square The name of the Nand operator is shorthand for Not-And, coming from the observation that $\operatorname{Nand}(x, y)$ is equivalent to $\operatorname{Not}(\operatorname{And}(x, y))$
\square Now, that's impressive!
\square It follows that any boolean function can be realized using Nand gates only

Representing a Boolean function using truth tables and Boolean expressions

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{x}$ Or $\mathbf{y})$ And $\operatorname{Not}(\mathbf{z})$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Truth Tables and Boolean Expressions

\square Given a Boolean function of n variables represented by a Boolean expression, we can always construct from it the function's truth table

We simply compute the function for every set of values (row) in the table
\square This construction is laborious, and obvious

Truth Tables and Boolean Expressions

At the same time, the dual construction is not obvious at all:\square Given a truth table representation of a Boolean function, can we always synthesize from it a Boolean expression for the underlying function?
\square The answer to this intriguing question is Yes!

When it comes to building computers

The truth table representation, the Boolean expression, and the ability to construct one from the other are all highly relevant

Suppose that we are called to build some hardware for sequencing DNA data

\square Our domain expert biologist wants to describe the sequencing logic using a truth table
\square Our job is to realize this logic in hardware
\square With the truth table data as a point of departure, we can synthesize from it a Boolean expression that represents the underlying function \square After simplifying the expression using Boolean algebra, we can proceed to implement it using logic gates

Truth table vs Boolean Expression

A truth table is often a convenient means for describing some states of nature

Whereas a Boolean expression is a convenient formalism for realizing this description in siliconThe ability to move from one representation to the other is one of the most important practices of hardware design

Although the truth table representation of a Boolean function is unique

\square Every Boolean function can be represented by many different yet equivalent Boolean expressions
\square And some will be shorter and easier to work with
\square For example, the expression:
\square (Not (x And y) And (Not (x) Or y) And (Not (y) Or y))
\square Is equivalent to the expression $\operatorname{Not}(x)$
\square The ability to simplify a Boolean expression is the first step toward hardware optimization

Gates

\square A gate is a physical device that implements a simple Boolean function Most digital computers today use electricity to realize gates and represent binary data

Today, gates are typically implemented as transistors etched in silicon, packaged as chips

Lots of "can do" implementations of gates also exist alongside practical ones

Any alternative technology permitting switching and conducting capabilities can be employed
\square Over the years, many hardware implementations of Boolean functions were created
\square Including magnetic, optical, biological, hydraulic, pneumatic, quantum-based, and even domino-based mechanisms

- Many of these implementations are whimsical "can do" feats

Implication of switching technologies and Boolean algebra

The availability of alternative switching technologies, on the one hand, and the observation that Boolean algebra can be used to abstract the behavior of logic gates, on the other, is extremely important

Implies that computer scientists don't have to worry about physical artifacts like electricity, circuits, switches, relays, and power sources

Implication of switching technologies and Boolean algebra

Allows computer scientists to be content with the abstract notions of Boolean algebra and gate logic

Trusting blissfully that someone else-physicists and electrical engineers-will figure out how to actually realize them in hardware

Primitive Gates as black boxes

Primitive gates can be viewed as black box devices that implement elementary logical operations

41

Composite gates

\square Since all logic gates have the same input and output data types (0 's and 1 's), they can be combined, creating composite gates of arbitrary complexity

For example, suppose we are asked to implement the three-way Boolean function And (a, b, c), which returns 1 when every one of its inputs is 1 , and 0 otherwiseUsing Boolean algebra, we can begin by observing that a.b.c $=(a . b) . c$

Next, we can use this result to construct the composite gate

if ($a==b==c==1$) set out $=1$
else set out $=0$

Gate Implementation

Let us consider another logic design example: Xor

\square By definition, $\operatorname{Xor}(a, b)$ is 1 exactly when either a is 1 and b is 0 or a is 0 and b is 1
\square Said otherwise, $\operatorname{Xor}(a, b)=\operatorname{Or}(\operatorname{And}(a, \operatorname{Not}(b))$, And (Not (a), b))

Gate Interface

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a} Xor \boldsymbol{b}
0	0	0
0	1	1
1	0	1
1	1	0

Professor: SHRIDEEP PALLICKARA
Gate Implementation Professor: Shrideep Pallickara
Computer Science Department Boolean Logic \& Algebra

Note that the interface of any given gate is unique: there is only one way to specify it

This is normally done using a truth table, a Boolean expression, or a verbal specification

This interface, however, can be realized in many different ways
\square Some will be more elegant and efficient than others
For example, the Xor implementation we saw in the previous slide is one possibility
\square There are more efficient ways to realize Xor, using less logic gates and less inter-gate connections

Functionality vs Efficiency

\square From a functional standpoint, the fundamental requirement of logic design is that the gate implementation will realize its stated interface \square One way or another
\square From an efficiency standpoint, the general rule is to try to use as few gates as possible, since fewer gates imply less cost, less energy, and faster computation

Art of Logic Design: Abstraction to Implementation

\square Given a gate abstraction (also referred to as specification, or interface) ...
\square Find an efficient way to implement it using other gates that were already implemented

The contents of this slide-set are based on the following references

\square Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a Modern Computer from First Principles. $2^{\text {nd }}$ Edition. ISBN-10/ ISBN-13: 0262539802 / 978-0262539807. MIT Press. [Chapter 1-2, Appendix A]
\square Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft Better Code. ISBN-10/ ISBN-13: 1593279701/ 978-1593279707. No Starch Press. [Chapter 2]

