CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

[BOOLEAN LOGIC & ALGEBRA]

Nand Atoms

Synthesize a Boolean function you say?
How?
Get to its disjunctive normal form
With And, Or, and Not navigating the storm

But that’s not all

Look, there’s De Morgan’s Law
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There’s one gate to rule them all SHR|DEEP PALLICKARA
Our atom, our one-man band
Nand
As you look on in awe Colorado State University
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survey

Why is it called exclusive-OR (XOR)

true, the other must be false for the output to be true

Why is Nand so effective?

fabricate using CMOS technology

Using a single type of gate simplifies the fabrication process
Versus NOR: Smaller size /cost; faster; and lower current leakage

Frequently asked questions from the previous class

Mutually Exclusive: The operation requires that the inputs are different, meaning if one is

Functionally complete (can create any other logic gate), faster, and more compact to

NAND gates (~4 transistors) are smaller than AND or OR gates (~6 transistors)
Because they are simpler, they offer lower propagation delay, i.e., NANDs are also faster

What do data centers use? GPUs which are made of NAND gates?
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Topics covered in this lecture
[

1 De Morgan’s Laws

1 Synthesizing Boolean functions

1 The expressive power of Nand gates

1 Adder circuits
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De Morgan’s Law

that applies only to Boolean algebra

The eponymous De Morgan’s law

This law states that the operation
Not (x And y) = Not(x) Or Not(y)

Not (x Or y) = Not(x) And Not(y)

Especially when we want to swap ANDs for ORs (or vice versa)

Professor: SHRIDEEP PALLICKARA
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In the 1800s, British mathematician Augustus De Morgan added a law

De Morgan’s Law is one of our first ‘power tools’ for rewriting circuits
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Another way of stating this
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Not (A Or B) = Not(A) And NotB) A U B — AN B
Not (A And B) = Not(A) OrNot(B) AN B —= AU B
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Not (x And y) = Not(x) Or Not(y)

[ TSI . |
01 Replacing And operations with Or
0 Also: x And y = Not (Not(x) Or Not(y))

0 0
0 1 1
0 1 0 1
0 1 1 0 1
1 0 0 1
1 0 0 1 1
1 1 1 o
1 1 0] 0 0
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Not (x Or y) = Not(x) And Not(y)

[ TSI . |
01 Replacing Or operations with And
01 x Or y = Not (Not(x) And Not(y))

0 0 _

0 1
0 0 1 1 1
0 1 1 0
o [ 1 1 0 0
1 0 1 0
1 [ o 0 1 0
1 1 1 0
1 1 0 0 0
COLORADO STATE UNIVERSITY (oo o e mvent  BOOLEAN LOGIC & ALGEBRA L6.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.4



CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

De Morgan’s Law: Implications

This means that with enough NOT operations, we can replace AND
operations with OR operations (and vice versa)

This is useful because computers operate on real-world input that’s not
under their control

De Morgan’s law is a tool that lets us operate on these negative logic
propositions in addition to the positive logic that we’ve already seen

Similar to double negatives in languages such as English (“We didn’t not go

skiing”)
COLORADO STATE UNIVERSITY SSEESJ;ESRHg)éTESQECBER;ARTMENT BoOLEAN LOGIC & ALGEBRA L6.9
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While it would be nice if inputs were of the form cold or
raining, they’re often NOT cold or NOT raining
cold raining | wear-coat not-cold notraining | not-wear-coat
FoooF F F F -
FoT T F T :
T F T T F F
T T T T T T
On the left (positive logic) side, we can make our decision using a
single OR operation
On the right (negative logic) side, De Morgan’s law allows us to make
our decision using a single AND operation
COLORADO STATE UNIVERSITY (oo o e mvent  BOOLEAN LOGIC & ALGEBRA L6.10
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case as NOT not-cold OR NOT not-raining

operation, so minimizing operations minimizes costs

Professor: SHRIDEEP PALLICKARA
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Practical Implications of the previous example and

De Morgan’s law in general
-b

0 Without De Morgan’s law, we’d have to implement the negative logic

0 Although that works, there is a cost in price and performance to each

L6.11
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s around like summat in your teeth?
re there some aces
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We have made the following claims without proof

Given a truth table representation of a Boolean function, we can
synthesize from it a Boolean expression that realizes the function

Any Boolean function can be expressed using only And, Or, and Not
operators

Any Boolean function can be expressed using only Nand operators

Professor: SHRIDEEP PALLICKARA
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Commutative and Idempotent Laws

Commutative Laws
x And y =y And x
xOry=yOrux

Idempotent Laws
xAnd x = Xx
xOrx=x
Not (Not (X)) = x

Professor: SHRIDEEP PALLICKARA
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Associative and Distributive Laws

Associative Laws
x And (y And z) = (x And y) And z
xOr(yOrz)=(xOry)Orz

Distributive Laws
x And (y Or z) = (x And y) Or (x And z)
x Or (y and z) = (x Or y) And (x Or z)

Professor: SHRIDEEP PALLICKARA
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7
De Morgan’s Laws
Not (x And y) = Not(x) Or Not(y)
Not (x Or y) = Not(x) And Not(y)
Professor: SHRIDEEP PALLICKARA BOOLEAN LOGIC & ALGEBRA 16.16
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Simplifying Boolean Functions

The algebraic laws we considered could be used to simplify Boolean
functions

For example, consider the function: Not (Not (x) And Not (x Or y) )

Can we reduce it to a simpler form?

Professor: SHRIDEEP PALLICKARA
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Not (Not (x) And Not (x Or y) )

= Not (Not (x) And (Not(x) And Not (y)) ) ... By De Morgan’s Law

Not (Not (x) And (Not(x)) And Not (y)) ... By the associative Law

Not (Not (x) And Not (y)) ... By the idempotent law

Not(Not (x)) Or Not(Not (y)) ... By De Morgan’s Law

x Ory ... By double negation
COLORADO STATE UNIVERSITY (oo o e mvent  BOOLEAN LOGIC & ALGEBRA L6.18
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Boolean simplifications like the one we just looked at
have significant practical implications

For example, the original Boolean expression Not (Not (x) And Not (x
Or y)) can be implemented in hardware using five logic gates

Whereas the simplified expression x Or y can be implemented using a
single logic gate

Both expressions deliver the same functionality

But the latter (i.e., x Or y) is five times more efficient in terms of cost,
energy, and speed of computation

Professor: SHRIDEEP PALLICKARA
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Reducing a Boolean expression into a simpler one is
an art requiring experience and insight

Various reduction tools and techniques are available, but the problem
remains challenging

In general, reducing a Boolean expression into its simplest form is an

NP-hard problem

The good news: your circuit doesn’t know that! So we still take our best swing

Even if simplification is hard in general, synthesis is guaranteed

We can always build some expression from the truth table ... and then
simplify when we can

Professor: SHRIDEEP PALLICKARA
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You might not write well every day, but you
can always edit a bad page. You can’t edit a
blank page.

Jodi Picoult

SYNTHESIZING BOOLEAN FUNCTIONS

COLORADO STATE UNIVERSITY

21

Synthesizing Boolean Functions
|

01 Given a truth table of a Boolean function, how can we construct, or
synthesize, a Boolean expression that represents this function?

We will look at a constructive algorithm to do this

1 And, come to think of it, are we guaranteed that every Boolean
function represented by a truth table can also be represented by a
Boolean expression?

Yes!

Professor: SHRIDEEP PALLICKARA
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Let’s look at a truth table definition of some three-
variable function f(x,y,z)

Our goal is to synthesize from these data a x |y oz feny
Boolean expression that represents this function (¢ ¢ 0 0
We start by focusing only on the truth table’s ° 1° | °
rows in which the function’s value is 1 0 1 |0
This happens in rows 3, 5, and 7 o | ] 0
— 0 0 1
1 o 1 o0
a1 |1 |0 [
11 1 o

COLORADO STATE UNIVERSITY SSEESJ;ESRHg)éTESQECBER;ARTMENT BoOLEAN LOGIC & ALGEBRA L6.23

23

Think of the truth table as a set of “winning
situations™

For each such row, we can write a little tripwire clause that is true only in
that one situation:

If a variable is 1 in the row, we use the variable (e.g., x)
If a variable is O in the row, we use its negation (e.g., Not(x) or 7 x)
AND them all together

That AND-clause is like a perfect fingerprint for that row

It matches only that row and fails everywhere else
Any mismatch flips at least one literal to false, and an AND needs all of them true

Then you OR all those “row-fingerprints” together

Because you want the function to be 1 if any of the winning situations occurs

Professor: SHRIDEEP PALLICKARA
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variable function f(x,y,z)

For each such row i, we define a Boolean
function f; that returns O for all the variable

Professor: SHRIDEEP PALLICKARA
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Let’s look at a truth table definition of some three-

x |y |z fxx, 2
0 0o |o 0

values except for the variable values in row i, o o |1 0
for which the function returns 1 o 1 o :
Each of these functions f; can be represented RE 1 0
by a conjunction (And-ing) of three terms, one R P P
term for each variable x, y, and z — T T .
Each being either the variable (or its negation),
depending on whether the value of this variable is e ]
1 (or O) inrow i 1 1 1 0
BooLEAN LogIC & ALGEBRA L6.25
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variable function f(x,y,z).

This process yields three such functions
fa(x, y, z) = (Not(x)) And y And (Not (z)) =
fs(x, , z) = x And Not(y) And (Not (z)) —
fs(x, ¥, z) = x And y And (Not (z)) —

f(x,y,2) = f3(x, 5, 2) Or f5(x, y, 2) Or f(x, y, )

Professor: SHRIDEEP PALLICKARA
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Let’s look at a truth table definition of some three-

x y |z fxnd
(0] (0] 0 0
0] 0] 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0
BooLEAN LoGIC & ALGEBRA L6.26
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Since these functions describe the only cases in which
the Boolean function f evaluates to 1

We conclude that f'can be represented by the Boolean expression
f=/30rf50rf;

Spelling it out: (Not (x) And y And Not (z)) Or (x And Not (y) And Not
(z)) Or (x And y And Not (z))

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY  CompyteR SCIENCE DEPARTMENT BooLeaN Locic & ALGEBRA L6.27

27

Avoiding tedious formality

The preceding example suggests that any Boolean function can be
systematically represented by a Boolean expression that has a very
specific structure:

It is the disjunction (Or-ing) of all the conjunctive (And-ing) funcﬁonsﬁ
whose construction was just described

This expression, which is the Boolean version of a sum of products, is
sometimes referred to as the function’s disjunctive normal form (DNF)
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What if the function has many variables?
s

01 And, thus the truth table has exponentially many rows?

o1 The resulting DNF may be long and cumbersome

[ At that point, Boolean algebra and various reduction techniques can
help transform the expression

o Into a more efficient and workable representation
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THE EXPRESSIVE
POWER OF
NAND

@ COLORADO STATE UNIVERSITY
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Every computer can be built using nothing more than
Nand gates

There are two ways to support this claim
One is to actually build a computer from Nand gates only

Another way is to provide a formal proof, which is what we’ll do next

NAND is the LEGO brick of logic: with enough
pieces, you can build a castle... or a deeply
questionable dragon!

Professor: SHRIDEEP PALLICKARA
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Step One

Lemma 1: Any Boolean function can be represented by a Boolean
expression containing only And, Or, and Not operators

PROOF
Any Boolean function can be used to generate a corresponding truth table

And, as we’ve just shown, any truth table can be used for synthesizing a
DNF, which is an Or-ing of And-ings of variables and their negations

It follows that any Boolean function can be represented by a Boolean
expression containing only And, Or, and Not operators

Professor: SHRIDEEP PALLICKARA
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In order to appreciate the significance of this result

Consider the infinite number of functions that can be defined over
integer numbers (rather than binary numbers)

It would have been nice if every such function could be represented by
an algebraic expression involving only addition, multiplication, and

negation

As it turns out, the vast majority of integer functions cannot be
expressed using a closed algebraic form

For example, f(x) = 2x for x#£7 and f{7) = 312

Professor: SHRIDEEP PALLICKARA
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In the world of binary numbers

Due to the finite number of values that each variable can assume (O or
1), we do have an attractive property

Every Boolean function can be expressed using nothing more than And, Or,
and Not operators

The practical implication is immense: any computer can be built from
nothing more than And, Or, and Not gates

Professor: SHRIDEEP PALLICKARA
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But, can we do better than this?

Lemma 2: Any Boolean function can be represented by a Boolean
expression containing only Not and And operators

PROOF
According to De Morgan law, the Or operator can be expressed using the
Not and And operators

Combining this result with Lemma 1, we get the proof

Professor: SHRIDEEP PALLICKARA
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Theorem: Any Boolean function can be represented by
a Boolean expression containing only Nand operators

Not (x) = Nand (x, x)
In words: If you set both the x and y variables of the Nand function to the
same value (0 or 1), the function evaluates to the negation of that value

And (x, y) = Not (Nand (x, y))
It is easy to show that the truth tables of both sides of the equation are
identical
We’'ve just shown that Not can be expressed using Nand
Combining these two results with Lemma 2, we get that any Boolean function
can be represented by a Boolean expression containing only Nand
operators

Professor: SHRIDEEP PALLICKARA
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What are the implications? [1/2]

This remarkable result, may well be called the fundamental theorem
of logic design

This stipulates that computers can be built from one atom only: a logic
gate that realizes the Nand function

Professor: SHRIDEEP PALLICKARA
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What are the implications? [2/2]

In other words, if we have as many Nand gates as we want, we can wire
them in patterns of activation that implement any Boolean function

All we have to do is figure out the right wiring

Indeed, most computers today are based on hardware infrastructures

consisting of billions of Nand gates (or Nor gates, which have similar
generative properties)

Professor: SHRIDEEP PALLICKARA
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In practice, though, we don’t have to limit ourselves
to Nand gates only
01 If electrical engineers and physicists can come up with efficient and

low-cost physical implementations of other elementary logic gates, we
will happily use them directly as primitive building blocks

01 This pragmatic observation does not take away anything from the
theorem’s importance

Professor: SHRIDEEP PALLICKARA
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Logic diagram for a half-adder
Ao
S
Bo
A B Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0 5
0 &
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Logic diagram for a full-adder [1/2]
A B CGn  Cout § 'i‘ ?
0 0 0 0 0 B
-bit
0 0 ‘ 0 ‘ Cout<— full («—Cin
0 1 0 0 1 adder
0 1 1 1 0 v
1 0 0 0 1 S
A o—
1 0 1 1 0 B o m
E’ ¥——o05s
1 1 0 1 0 Cin©
1 1 1 1 1 \
COLORADO STATE UNIVERSITY (oo o e mvent  BOOLEAN LOGIC & ALGEBRA L6.42
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Logic diagram for a full-adder [2/2]
(e
A B CGin  Cout §
0 0 0 0 0 A
0 0 1 0 1 0 &
B
0 1 0 0 1 s
0«
0 1 1 1 0
1 0 0 0 1 0 &
1 0 1 1 0 G
1 1 0 1 0
1 1 1 1 1
C%
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Ripple adder: Adding multiple bits [1/2]
(e
Cin Sum So
Bo B c
Ao A out —
L Gin Sum - S
By B Cout 1
A A
B | Cin Sum S2
2 B
C
A A out —‘
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Ripple adder: Adding multiple bits [2/2]

This ripple-carry adder gets its name from the way that the carry ripples
from one bit to the next

It's like doing the wave

This works fine, but you can see that there are delays per bit, which adds up
fast if we're building a 32- or 64-bit adder

These delays are substantially alleviated in the carry lookahead adder

Reduces addition latency by predicting carry bits in advance using parallel
“generate” and “propagate” logic, rather than waiting for carries to ripple through

each bit stage

Professor: SHRIDEEP PALLICKARA
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The contents of this slide-set are based on the
following references

Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a
Modern Computer from First Principles. 2" Edition. ISBN-10/ ISBN-13: 0262539802
/ 978-0262539807. MIT Press. [Chapter 1-2, Appendix A]

Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine
2"¢ Edition. ASIN: BO7VSC1K8Z. No Starch Press. 2020. [Chapter 2]

https://en.wikipedia.org /wiki/Adder_(electronics)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT BOOLEAN LOGIC & ALGEBRA L6.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.23



