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Nand Atoms
Synthesize a Boolean function you say?
 How?
Get to its disjunctive normal form
     With And, Or, and Not navigating the storm

But that’s not all
    There’s one gate to rule them all
Our atom, our one-man band
      Nand

As you look on in awe
      Look, there’s De Morgan’s Law 
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Frequently asked questions from the previous class 
survey
¨ Why is it called exclusive-OR (XOR)

¤ Mutually Exclusive: The operation requires that the inputs are different, meaning if one is 
true, the other must be false for the output to be true

¨ Why is Nand so effective?
¤ Functionally complete (can create any other logic gate), faster, and more compact to 

fabricate using CMOS technology
¤ NAND gates (~4 transistors) are smaller than AND or OR gates (~6 transistors)

n Because they are simpler, they offer lower propagation delay, i.e., NANDs are also faster
¤ Using a single type of gate simplifies the fabrication process
¤ Versus NOR: Smaller size/cost; faster; and lower current leakage

¨ What do data centers use? GPUs which are made of NAND gates?
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Topics covered in this lecture

¨ De Morgan’s Laws

¨ Synthesizing Boolean functions
¨ The expressive power of Nand gates

¨ Adder circuits
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De Morgan’s Law

¨ In the 1800s, British mathematician Augustus De Morgan added a law 
that applies only to Boolean algebra
¤ The eponymous De Morgan’s law 

¨ This law states that the operation
¤ Not (x And y) = Not(x) Or Not(y)

¤ Not (x Or y) = Not(x) And Not(y)

¨ De Morgan’s Law is one of our first ‘power tools’ for rewriting circuits
¤ Especially when we want to swap ANDs for ORs (or vice versa)
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Another way of stating this

¨ Not (A Or B) = Not(A) And Not(B)

¨ Not (A And B) = Not(A) Or Not(B)
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Not (x And y) = Not(x) Or Not(y)

¨ Replacing And operations with Or

¨ Also: x And y = Not (Not(x) Or Not(y))

x y x And y Not(x And y)

0            0 0

0            1 0

1            0 0

1            1 1

1

1

1

0

x y Not x Not y Not(x) Or Not (y)

0        0 1

0        1 1

1        0 0

1        1 0

1

0

1

0

1

1

1

0
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Not (x Or y) = Not(x) And Not(y)

¨ Replacing Or operations with And

¨ x Or y = Not (Not(x) And Not(y))

x y x Or y Not(x Or y)

0            0 0

0            1 1

1            0 1

1            1 1

1

0

0

0

x y Not x Not y Not(x) And Not(y)

0        0 1

0        1 1

1        0 0

1        1 0

1

0

1

0

1

0

0

0
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De Morgan’s Law: Implications

¨ This means that with enough NOT operations, we can replace AND 
operations with OR operations (and vice versa)

¨ This is useful because computers operate on real-world input that’s not 
under their control

¨ De Morgan’s law is a tool that lets us operate on these negative logic 
propositions in addition to the positive logic that we’ve already seen
¤ Similar to double negatives in languages such as English (“We didn’t not go 

skiing”)
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While it would be nice if inputs were of the form cold or 
raining, they’re often NOT cold or NOT raining

¨ On the left (positive logic) side, we can make our decision using a 
single OR operation

¨ On the right (negative logic) side, De Morgan’s law allows us to make 
our decision using a single AND operation
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Practical Implications of the previous example and 
De Morgan’s law in general

¨ Without De Morgan’s law, we’d have to implement the negative logic 
case as NOT not-cold OR NOT not-raining

¨ Although that works, there is a cost in price and performance to each 
operation, so minimizing operations minimizes costs 
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THE EXPRESSIVE POWER OF NAND GATES

Do you ever get that fear that you can’t shift
The type that sticks around like summat in your teeth?
Are there some aces up your sleeve?
Have you no idea that you’re in deep?
I dreamt about you nearly every night this week
How many secrets can you keep?
‘Cause there’s this tune I found that makes me think of you somehow and I play it on repeat

Do I Wanna Know?, Alex Turner, Arctic Monkeys

12



SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

BOOLEAN LOGIC & ALGEBRACOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.13

We have made the following claims without proof

¨ Given a truth table representation of a Boolean function, we can 
synthesize from it a Boolean expression that realizes the function

¨ Any Boolean function can be expressed using only And, Or, and Not 
operators

¨ Any Boolean function can be expressed using only Nand operators
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Commutative and Idempotent Laws

¨ Commutative Laws
¤ x And y = y And x
¤ x Or y = y Or x

¨ Idempotent Laws
¤ x And x = x
¤ x Or x = x
¤ Not (Not (x)) = x
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Associative and Distributive Laws

¨ Associative Laws
¤ x And (y And z) = (x And y) And z
¤ x Or (y Or z) = (x Or y) Or z

¨ Distributive Laws
¤ x And (y Or z) = (x And y) Or (x And z)
¤ x Or (y and z) = (x Or y) And (x Or z)
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De Morgan’s Laws

¨ Not (x And y) = Not(x) Or Not(y)

¨ Not (x Or y) = Not(x) And Not(y)
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Simplifying Boolean Functions

¨ The algebraic laws we considered could be used to simplify Boolean 
functions

¨ For example, consider the function: Not (Not (x) And Not (x Or y) ) 
¤ Can we reduce it to a simpler form?
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Not (Not (x) And Not (x Or y) )

¨ = Not (Not (x) And (Not(x) And Not (y)) ) … By De Morgan’s Law

¨ Not (Not (x) And (Not(x))  And Not (y))  … By the associative Law

¨ Not (Not (x) And Not (y))     … By the idempotent law

¨ Not(Not (x)) Or Not(Not (y))   … By De Morgan’s Law

¨ x Or y      … By double negation
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Boolean simplifications like the one we just looked at 
have significant practical implications

¨ For example, the original Boolean expression Not (Not (x) And Not (x 
Or y)) can be implemented in hardware using five logic gates

¨ Whereas the simplified expression x Or y can be implemented using a 
single logic gate

¤ Both expressions deliver the same functionality

¤ But the latter (i.e., x Or y) is five times more efficient in terms of cost, 
energy, and speed of computation
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Reducing a Boolean expression into a simpler one is 
an art requiring experience and insight

¨ Various reduction tools and techniques are available, but the problem 
remains challenging

¨ In general, reducing a Boolean expression into its simplest form is an 
NP-hard problem
¤ The good news: your circuit doesn’t know that! So we still take our best swing

¨ Even if simplification is hard in general, synthesis is guaranteed
¤ We can always build some expression from the truth table … and then 

simplify when we can
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You might not write well every day, but you 
can always edit a bad page. You can’t edit a 
blank page. 

Jodi Picoult
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Synthesizing Boolean Functions

¨ Given a truth table of a Boolean function, how can we construct, or 
synthesize, a Boolean expression that represents this function? 
¤ We will look at a constructive algorithm to do this

¨ And, come to think of it, are we guaranteed that every Boolean 
function represented by a truth table can also be represented by a 
Boolean expression?
¤ Yes!
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Let’s look at a truth table definition of some three-
variable function f(x,y,z)

¨ Our goal is to synthesize from these data a 
Boolean expression that represents this function

¨ We start by focusing only on the truth table’s 
rows in which the function’s value is 1
¤ This happens in rows 3, 5, and 7 

x y z f(x, y, z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0
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Think of the truth table as a set of “winning 
situations”
¨ For each such row, we can write a little tripwire clause that is true only in 

that one situation:
¤ If a variable is 1 in the row, we use the variable (e.g., x)
¤ If a variable is 0 in the row, we use its negation (e.g., Not(x) or ¬ x)
¤ AND them all together

¨ That AND-clause is like a perfect fingerprint for that row 
¤ It matches only that row and fails everywhere else 

n Any mismatch flips at least one literal to false, and an AND needs all of them true

¨ Then you OR all those “row-fingerprints” together
¤ Because you want the function to be 1 if any of the winning situations occurs
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Let’s look at a truth table definition of some three-
variable function f(x,y,z)
¨ For each such row i, we define a Boolean 

function fi that returns 0 for all the variable 
values except for the variable values in row i, 
for which the function returns 1

¨ Each of these functions fi can be represented 
by a conjunction (And-ing) of three terms, one 
term for each variable x, y, and z
¤ Each being either the variable (or its negation), 

depending on whether the value of this variable is 
1 (or 0) in row i

x y z f(x, y, z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0
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Let’s look at a truth table definition of some three-
variable function f(x,y,z).

¨ This process yields three such functions x y z f(x, y, z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

f3(x, y, z) = (Not(x)) And y And (Not (z)) 

f5(x, y, z) = x And Not(y) And (Not (z)) 

f7(x, y, z) = x And y And (Not (z)) 

f (x, y, z) = f3(x, y, z) Or f5(x, y, z) Or f7(x, y, z) 
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Since these functions describe the only cases in which 
the Boolean function f evaluates to 1

¨ We conclude that f can be represented by the Boolean expression
¤ f = f3 Or f5 Or f7

¨ Spelling it out: (Not (x) And y And Not (z)) Or (x And Not (y) And Not 
(z)) Or (x And y And Not (z))
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Avoiding tedious formality 

¨ The preceding example suggests that any Boolean function can be 
systematically represented by a Boolean expression that has a very 
specific structure: 

¤ It is the disjunction (Or-ing) of all the conjunctive (And-ing) functions fi 
whose construction was just described

¨ This expression, which is the Boolean version of a sum of products, is 
sometimes referred to as the function’s disjunctive normal form (DNF)
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What if the function has many variables?

¨ And, thus the truth table has exponentially many rows?
¤ The resulting DNF may be long and cumbersome

¨ At that point, Boolean algebra and various reduction techniques can 
help transform the expression 
¤ Into a more efficient and workable representation
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THE EXPRESSIVE 
POWER OF 
NAND
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Every computer can be built using nothing more than 
Nand gates

¨ There are two ways to support this claim
¤ One is to actually build a computer from Nand gates only
¤ Another way is to provide a formal proof, which is what we’ll do next 

NAND is the LEGO brick of logic: with enough 
pieces, you can build a castle… or a deeply 
questionable dragon!
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Step One

¨ Lemma 1: Any Boolean function can be represented by a Boolean 
expression containing only And, Or, and Not operators

¨ PROOF

¤ Any Boolean function can be used to generate a corresponding truth table

¤ And, as we’ve just shown, any truth table can be used for synthesizing a 
DNF, which is an Or-ing of And-ings of variables and their negations

¤ It follows that any Boolean function can be represented by a Boolean 
expression containing only And, Or, and Not operators
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In order to appreciate the significance of this result 

¨ Consider the infinite number of functions that can be defined over 
integer numbers (rather than binary numbers) 

¨ It would have been nice if every such function could be represented by 
an algebraic expression involving only addition, multiplication, and 
negation

¨ As it turns out, the vast majority of integer functions cannot be 
expressed using a closed algebraic form
¤ For example,  f(x) = 2x for x¹7 and f(7) = 312
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In the world of binary numbers

¨ Due to the finite number of values that each variable can assume (0 or 
1), we do have an attractive property
¤ Every Boolean function can be expressed using nothing more than And, Or, 

and Not operators

¨ The practical implication is immense: any computer can be built from 
nothing more than And, Or, and Not gates
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But, can we do better than this?

¨ Lemma 2: Any Boolean function can be represented by a Boolean 
expression containing only Not and And operators

¨ PROOF 
¤ According to De Morgan law, the Or operator can be expressed using the 

Not and And operators
¤ Combining this result with Lemma 1, we get the proof
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Theorem: Any Boolean function can be represented by 
a Boolean expression containing only Nand operators
¨ Not (x) = Nand (x, x) 

¤ In words: If you set both the x and y variables of the Nand function to the 
same value (0 or 1), the function evaluates to the negation of that value

¨ And (x, y) = Not (Nand (x, y)) 
¤ It is easy to show that the truth tables of both sides of the equation are 

identical
¤ We’ve just shown that Not can be expressed using Nand
¤ Combining these two results with Lemma 2, we get that any Boolean function 

can be represented by a Boolean expression containing only Nand 
operators 
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What are the implications?                      [1/2]

¨ This remarkable result, may well be called the fundamental theorem 
of logic design

¨ This stipulates that computers can be built from one atom only: a logic 
gate that realizes the Nand function
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What are the implications?                      [2/2]

¨ In other words, if we have as many Nand gates as we want, we can wire 
them in patterns of activation that implement any Boolean function
¤ All we have to do is figure out the right wiring 

¨ Indeed, most computers today are based on hardware infrastructures 
consisting of billions of Nand gates (or Nor gates, which have similar 
generative properties)
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In practice, though, we don’t have to limit ourselves 
to Nand gates only

¨ If electrical engineers and physicists can come up with efficient and 
low-cost physical implementations of other elementary logic gates, we 
will happily use them directly as primitive building blocks

¨ This pragmatic observation does not take away anything from the 
theorem’s importance
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LOOKING AT SOME ADDERS
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Logic diagram for a half-adder

A B Cout S

0            0 0

0            1 0

1            0 0

1            1 1

0

1

1

0
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Logic diagram for a full-adder                 [1/2]

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
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Logic diagram for a full-adder                 [2/2]

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
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Ripple adder: Adding multiple bits           [1/2]

Sum
Cout

Cin
B
A

Sum
Cout

Cin
B
A

Sum
Cout

Cin
B
A

A0

B0

A1

B1

A2

B2

S0

S1

S2
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Ripple adder: Adding multiple bits           [2/2]

¨ This ripple-carry adder gets its name from the way that the carry ripples 
from one bit to the next 
¤ It’s like doing the wave

¨ This works fine, but you can see that there are delays per bit, which adds up 
fast if we’re building a 32- or 64-bit adder

¨ These delays are substantially alleviated in the carry lookahead adder
¤ Reduces addition latency by predicting carry bits in advance using parallel 

“generate” and “propagate” logic, rather than waiting for carries to ripple through 
each bit stage
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The contents of this slide-set are based on the 
following references
¨ Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a 

Modern Computer from First Principles. 2nd Edition. ISBN-10/ ISBN-13:  0262539802 
/ 978-0262539807. MIT Press. [Chapter 1-2, Appendix A] 

¨ Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine 
2nd Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 2]

¨ https://en.wikipedia.org/wiki/Adder_(electronics)
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