CS250: Foundations of Computer Systems [BOOLEAN LOGIC \& Algebra]

Nand Atoms

Synthesize a Boolean function you say? How?
Get to its disjunctive normal form
With And, Or, and Not navigating the storm
But that's not all
There's one gate to rule them all
Our atom, our one-man band Nand

As you look on in awe
Look, there's De Morgan's Law

1

Frequently asked questions from the previous class

survey

\square Do manufacturers produce circuitry that have a mix of And, Not, Xor, etc. gates?How do you represent And, Or, and, Not with Nand?Why does the CPU care about these gates and boolean logic? Can't it just "do" the operations?Do truth tables have to be complete?What is a clock cycle?

CS250: Foundations of Computer Systems Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

\square De Morgan's Laws
\square Synthesizing Boolean functions
\square The expressive power of Nand gates
\square Adder circuits

3

4

De Morgan's Law

In the 1800s, British mathematician Augustus De Morgan added a law that applies only to Boolean algebra\square The eponymous De Morgan's law
This law states that the operation
$\square \operatorname{Not}(x \operatorname{And} y)=\operatorname{Not}(x) \operatorname{Or} \operatorname{Not}(y)$
$\square \operatorname{Not}(x \operatorname{Or} y)=\operatorname{Not}(x)$ And $\operatorname{Not}(y)$

5

Another way of stating this

$\square \operatorname{Not}(A \operatorname{Or} B)=\operatorname{Not}(A)$ And $\operatorname{Not}(B)$
$\overline{A \cup B}=\bar{A} \cap \bar{B}$
$\operatorname{Not}(A \operatorname{And} B)=\operatorname{Not}(A) \operatorname{Or} \operatorname{Not}(B)$ $\overline{A \cap B}=\bar{A} \cup \bar{B}$

$\operatorname{Not}(x \operatorname{And} y)=\operatorname{Not}(x) \operatorname{Or} \operatorname{Not}(y)$

\square Replacing And operations with Or
\square Also: x And $y=\operatorname{Not}(\operatorname{Not}(x) \operatorname{Or} \operatorname{Not}(y))$

x	y	x And y	$\operatorname{Not}(x$ And $y)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

x	y	Not x	Not y	$\operatorname{Not}(x)$ Or Not (y)
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

$\operatorname{Not}(x \operatorname{Or} y)=\operatorname{Not}(x)$ And $\operatorname{Not}(y)$

\square Replacing Or operations with And
$\square x \operatorname{Or} y=\operatorname{Not}(\operatorname{Not}(x)$ And $\operatorname{Not}(y))$

x	y	x Or y	$\operatorname{Not}(x$ Or $y)$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x	\boldsymbol{y}	$\operatorname{Not} \boldsymbol{x}$	$\operatorname{Not} \boldsymbol{y}$	$\operatorname{Not}(\boldsymbol{x})$ And $\operatorname{Not}(\boldsymbol{y})$
0	0	1	1	$\mathbf{1}$
0	1	1	0	0
1	0	0	1	0
1	1	0	0	$\mathbf{0}$

De Morgan's Law: Implications

This means that with enough NOT operations, we can replace AND operations with OR operations (and vice versa)

This is useful because computers operate on real-world input that's not under their control
\square De Morgan's law is a tool that lets us operate on these negative logic propositions in addition to the positive logic that we've already seen \square Similar to double negatives in languages such as English ("We didn't not go skiing")

9

While it would be nice if inputs were of the form cold or raining, they're often NOT cold or NOT raining

cold	raining	wear-coat	not-cold	not-raining	not-wear-coat
F	F	F	F	F	F
F	T	T	F	T	F
T	F	T	T	F	F
T	T	T	T	T	T

\square On the left (positive logic) side, we can make our decision using a single OR operation
\square On the right (negative logic) side, De Morgan's law allows us to make our decision using a single AND operation

Practical Implications of the previous example and De Morgan's law in general

Without De Morgan's law, we'd have to implement the negative logic case as NOT not-cold OR NOT not-raining
\square Although that works, there is a cost in price and performance to each operation, so minimizing operations minimizes costs

12

We have made the following claims without proof

\square Given a truth table representation of a Boolean function, we can synthesize from it a Boolean expression that realizes the function

Any Boolean function can be expressed using only And, Or, and Not operators

Any Boolean function can be expressed using only Nand operators

Commutative and Idempotent Laws

\square Commutative Laws
$\square x$ And $y=y$ And x
$\square x \operatorname{Or} y=y \operatorname{Or} x$

Idempotent Laws
$\square x$ And $x=x$
$\square x$ Or $x=x$

Associative and Distributive Laws

\square Associative Laws
$\square x$ And (y And z) $=(x$ And y) And z
$\square x \operatorname{Or}(y \operatorname{Or} z)=(x \operatorname{Or} y) \operatorname{Or} z$Distributive Laws
$\square x$ And $(y \operatorname{Or} z)=(x$ And $y) \operatorname{Or}(x$ And $z)$
$\square x \operatorname{Or}(y$ and $z)=(x \operatorname{Or} y)$ And $(x \operatorname{Or} z)$

De Morgan's Laws

$\square \operatorname{Not}(x \operatorname{And} y)=\operatorname{Not}(x) \operatorname{Or} \operatorname{Not}(y)$
$\operatorname{Not}(x \operatorname{Or} y)=\operatorname{Not}(x)$ And $\operatorname{Not}(y)$

Simplifying Boolean Functions

The algebraic laws we considered could be used to simplify Boolean functionsFor example, consider the function: Not (Not (x) And Not (x Or y))
Can we reduce it to a simpler form?

Not (Not (x) And Not (x Or y))

$\square=\operatorname{Not}(\operatorname{Not}(x)$ And $(\operatorname{Not}(x)$ And Not (y))) ... By De Morgan's Law
$\square \operatorname{Not}(\operatorname{Not}(x)$ And $(\operatorname{Not}(x))$ And $\operatorname{Not}(y))$... By the associative Law
\square Not (Not (x) And Not (y)) ... By the idempotent law$\operatorname{Not}(\operatorname{Not}(x)) \operatorname{Or} \operatorname{Not}(\operatorname{Not}(y)) \quad .$. By De Morgan's Law
x Or y
... By double negation

Boolean simplifications like the one we just looked at have significant practical implications

For example, the original Boolean expression Not (Not (x) And Not (x Or yl) can be implemented in hardware using five logic gates

Whereas the simplified expression x Or y can be implemented using a single logic gate
\square Both expressions deliver the same functionality
\square But the latter (i.e., x Or y) is five times more efficient in terms of cost, energy, and speed of computation

Reducing a Boolean expression into a simpler one is an art requiring experience and insight

Various reduction tools and techniques are available, but the problem remains challenging

In general, reducing a Boolean expression into its simplest form is an NP-hard problem

You might not write well every day, but you can always edit a bad page. You can't edit a blank page.

Jodi Picoult

Synthesizing Boolean Functions

Synthesizing Boolean Functions

\square Given a truth table of a Boolean function, how can we construct, or synthesize, a Boolean expression that represents this function?
\square We will look at a constructive algorithm to do this
And, come to think of it, are we guaranteed that every Boolean function represented by a truth table can also be represented by a Boolean expression?

```
Yes!
```


Let's look at a truth table definition of some threevariable function $f(x, y, z)$

\square Our goal is to synthesize from these data a Boolean expression that represents this function We start by focusing only on the truth table's rows in which the function's value is 1
\square This happens in rows 3, 5, and 7
For each such row i, we define a Boolean function f_{i} that returns 0 for all the variable values except for the variable values in row i, for which the function returns 1

Let's look at a truth table definition of some threevariable function $f(x, y, z)$

For each such row i, we define a Boolean function f_{i} that returns 0 for all the variable values except for the variable values in row i, for which the function returns 1

Each of these functions f_{i} can be represented by a conjunction (And-ing) of three terms, one term for each variable x, y, and z

Each being either the variable (or its negation), depending on whether the value of this variable is 1 (or 0) in row i

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Let's look at a truth table definition of some threevariable function $f(x, y, z)$.

This process yields three such functions
$\mathrm{f}_{3}(x, y, z)=(\operatorname{Not}(x))$ And y And (Not $\left.(z)\right)$
$\mathrm{f}_{5}(x, y, z)=x$ And $\operatorname{Not}(y)$ And (Not $\left.(z)\right)$
$\mathrm{f}_{7}(x, y, z)=x$ And y And (Not (z))
$\mathrm{f}(x, y, z)=f_{3}(x, y, z) \operatorname{Or} f_{5}(x, y, z) \operatorname{Or} f_{7}(x, y, z)$

Since these functions describe the only cases in which the Boolean function f evaluates to 1

We conclude that f can be represented by the Boolean expression $\square \boldsymbol{f}=f_{3} \operatorname{Or} f_{5} \operatorname{Or} f_{7}$
\square Spelling it out: (Not (x) And y And Not (z)) Or (x And Not (y) And Not (z)) Or (x And y And Not (z)).

Avoiding tedious formality

The preceding example suggests that any Boolean function can be systematically represented by a Boolean expression that has a very specific structure:
\square It is the disjunction (Or-ing) of all the conjunctive (And-ing) functions $\boldsymbol{f}_{\mathrm{i}}$ whose construction was just described

This expression, which is the Boolean version of a sum of products, is sometimes referred to as the function's disjunctive normal form (DNF)

What if the function has many variables?

And, thus the truth table has exponentially many rows?
\square The resulting DNF may be long and cumbersome
At that point, Boolean algebra and various reduction techniques can help transform the expression
\square Into a more efficient and workable representation

29

Every computer can be built using nothing more than Nand gates
\square There are two ways to support this claim
\square One is to actually build a computer from Nand gates only
\square Another way is to provide a formal proof, which is what we'll do next

Step One

Lemma 1: Any Boolean function can be represented by a Boolean expression containing only And, Or, and Not operatorsPROOF
Any Boolean function can be used to generate a corresponding truth table
And, as we've just shown, any truth table can be used for synthesizing a DNF, which is an Or-ing of And-ings of variables and their negations

It follows that any Boolean function can be represented by a Boolean expression containing only And, Or, and Not operators

In order to appreciate the significance of this result

Consider the infinite number of functions that can be defined over integer numbers (rather than binary numbers)

It would have been nice if every such function could be represented by an algebraic expression involving only addition, multiplication, and negation

As it turns out, the vast majority of integer functions cannot be expressed using a closed algebraic form

For example, $f(x)=2 x$ for $x \neq 7$ and $f(7)=312$

In the world of binary numbers

\square Due to the finite number of values that each variable can assume (0 or 1), we do have an attractive property
\square Every Boolean function can be expressed using nothing more than And, Or, and Not operators

The practical implication is immense: any computer can be built from nothing more than And, Or, and Not gates

But, can we do better than this?

Lemma 2: Any Boolean function can be represented by a Boolean expression containing only Not and And operatorsPROOF
According to De Morgan law, the Or operator can be expressed using the Not and And operators
Combining this result with Lemma 1, we get the proof.

Theorem: Any Boolean function can be represented by a Boolean expression containing only Nand operators

Not (x) $=\operatorname{Nand}(x, x)$
\square In words: If you set both the x and y variables of the Nand function to the same value (0 or 1), the function evaluates to the negation of that value

And $(x, y)=\operatorname{Not}(\operatorname{Nand}(x, y))$

- It is easy to show that the truth tables of both sides of the equation are identical

We've just shown that Not can be expressed using Nand
Combining these two results with Lemma 2, we get that any Boolean function can be represented by a Boolean expression containing only Nand operators

What are the implications?

This remarkable result, may well be called the fundamental theorem of logic design

This stipulates that computers can be built from one atom only: a logic gate that realizes the Nand function

What are the implications?

In other words, if we have as many Nand gates as we want, we can wire them in patterns of activation that implement any Boolean function \square All we have to do is figure out the right wiring
\square Indeed, most computers today are based on hardware infrastructures consisting of billions of Nand gates (or Nor gates, which have similar generative properties)

In practice, though, we don't have to limit ourselves to Nand gates only

\square If electrical engineers and physicists can come up with efficient and low-cost physical implementations of other elementary logic gates, we will happily use them directly as primitive building blocks

This pragmatic observation does not take away anything from the theorem's importance

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

39

Logic diagram for a half-adder

\boldsymbol{A}	\boldsymbol{B}	$\mathbf{C}_{\text {out }}$	\boldsymbol{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

41

Logic diagram for a full-adder

A	B	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ripple adder: Adding multiple bits [1/2]

Ripple adder: Adding multiple bits

\square This ripple-carry adder gets its name from the way that the carry ripples from one bit to the next

- lt's like doing the wave

This works fine, but you can see that there are delays per bit, which adds up fast if we're building a 32- or 64-bit adderThese delays are substantially alleviated in the carry lookahead adder

The contents of this slide-set are based on the following references

\square Noam Nisan and Shimon Schocken. The Elements of Computing Systems: Building a Modern Computer from First Principles. 2 ${ }^{\text {nd }}$ Edition. ISBN-10/ ISBN-13: 0262539802 / 978-0262539807. MIT Press. [Chapter 1-2, Appendix A]
\square Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine $2^{\text {nd }}$ Edition. ASIN: B07VSC 1 K8Z. No Starch Press. 2020. [Chapter 2]
\square https://en.wikipedia.org/wiki/Adder_(electronics)

