

CS250: FOUNDATIONS OF COMPUTER SYSTEMS [BOOLEAN LOGIC & ALGEBRA]

Nand Atoms

Synthesize a Boolean function you say?

How?

Get to its disjunctive normal form

With And, Or, and Not navigating the storm

But that's not all

There's one gate to rule them all

Our atom, our one-man band

Nand

As you look on in awe

Look, there's De Morgan's Law

SHRIDEEP PALICKARA

Computer Science

Colorado State University

COMPUTER SCIENCE DEPARTMENT

1

Frequently asked questions from the previous class survey

- Why is it called exclusive-OR (XOR)
 - ▣ Mutually Exclusive: The operation requires that the inputs are *different*, meaning if one is true, the other must be false for the output to be true
- Why is Nand so effective?
 - ▣ Functionally complete (can create any other logic gate), faster, and more compact to fabricate using CMOS technology
 - ▣ NAND gates (~4 transistors) are smaller than AND or OR gates (~6 transistors)
 - Because they are simpler, they offer lower propagation delay, i.e., NANDs are also faster
 - ▣ Using a single type of gate simplifies the fabrication process
 - ▣ Versus NOR: Smaller size/cost; faster; and lower current leakage
- What do data centers use? GPUs which are made of NAND gates?

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.2

2

Topics covered in this lecture

- De Morgan's Laws
- Synthesizing Boolean functions
- The expressive power of Nand gates
- Adder circuits

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.3

3

4

De Morgan's Law

- In the 1800s, British mathematician Augustus De Morgan added a law that applies only to Boolean algebra
 - The eponymous De Morgan's law
- This law states that the operation
 - $\text{Not}(x \text{ And } y) = \text{Not}(x) \text{ Or } \text{Not}(y)$
 - $\text{Not}(x \text{ Or } y) = \text{Not}(x) \text{ And } \text{Not}(y)$
- De Morgan's Law is one of our first '**power tools**' for *rewriting circuits*
 - Especially when we want to swap ANDs for ORs (or vice versa)

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.5

5

Another way of stating this

- $\text{Not}(A \text{ Or } B) = \text{Not}(A) \text{ And } \text{Not}(B)$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\text{Not}(A \text{ And } B) = \text{Not}(A) \text{ Or } \text{Not}(B)$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.6

6

Not (x And y) = Not(x) Or Not(y)

- Replacing And operations with Or
- Also: $x \text{ And } y = \text{Not}(\text{Not}(x) \text{ Or } \text{Not}(y))$

x	y	$x \text{ And } y$	$\text{Not}(x \text{ And } y)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

x	y	$\text{Not } x$	$\text{Not } y$	$\text{Not}(x) \text{ Or } \text{Not}(y)$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
 COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.7

7

Not (x Or y) = Not(x) And Not(y)

- Replacing Or operations with And
- $x \text{ Or } y = \text{Not}(\text{Not}(x) \text{ And } \text{Not}(y))$

x	y	$x \text{ Or } y$	$\text{Not}(x \text{ Or } y)$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x	y	$\text{Not } x$	$\text{Not } y$	$\text{Not}(x) \text{ And } \text{Not}(y)$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
 COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.8

8

De Morgan's Law: Implications

- This means that with enough NOT operations, we can **replace** AND operations with OR operations (and vice versa)
- This is useful because computers operate on real-world input that's not under their control
- De Morgan's law is a tool that lets us operate on these negative logic propositions in addition to the positive logic that we've already seen
 - Similar to double negatives in languages such as English ("We didn't not go skiing")

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.9

9

While it would be nice if inputs were of the form cold or raining, they're often NOT cold or NOT raining

cold	raining	wear-coat	not-cold	not-raining	not-wear-coat
F	F	F	F	F	F
F	T	T	F	T	F
T	F	T	T	F	F
T	T	T	T	T	T

- On the left (positive logic) side, we can make our decision using a single OR operation
- On the right (negative logic) side, De Morgan's law allows us to make our decision using a single AND operation

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.10

10

Practical Implications of the previous example and De Morgan's law in general

- Without De Morgan's law, we'd have to implement the negative logic case as NOT not-cold OR NOT not-raining
- Although that works, there is a cost in price and performance to each operation, so minimizing operations minimizes costs

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.11

11

Do you ever get that fear that you can't shift
The type that sticks around like summat in your teeth?
Are there some aces up your sleeve?
Have you no idea that you're in deep?
I dreamt about you nearly every night this week
How many secrets can you keep?
'Cause there's this tune I found that makes me think of you somehow and I play it on repeat

Do I Wanna Know?, Alex Turner, Arctic Monkeys

COMPUTER SCIENCE DEPARTMENT

THE EXPRESSIVE POWER OF NAND GATES

12

We have made the following claims without proof

- Given a truth table representation of a Boolean function, we can **synthesize** from it a **Boolean expression** that realizes the function
- Any Boolean function can be expressed using only And, Or, and Not operators
- Any Boolean function can be expressed using only Nand operators

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.13

13

Commutative and Idempotent Laws

□ **Commutative** Laws

- $x \text{ And } y = y \text{ And } x$
- $x \text{ Or } y = y \text{ Or } x$

□ **Idempotent** Laws

- $x \text{ And } x = x$
- $x \text{ Or } x = x$
- $\text{Not}(\text{Not}(x)) = x$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.14

14

Associative and Distributive Laws

□ **Associative** Laws

- $x \text{ And } (y \text{ And } z) = (x \text{ And } y) \text{ And } z$
- $x \text{ Or } (y \text{ Or } z) = (x \text{ Or } y) \text{ Or } z$

□ **Distributive** Laws

- $x \text{ And } (y \text{ Or } z) = (x \text{ And } y) \text{ Or } (x \text{ And } z)$
- $x \text{ Or } (y \text{ and } z) = (x \text{ Or } y) \text{ And } (x \text{ Or } z)$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.15

15

De Morgan's Laws

- $\text{Not}(x \text{ And } y) = \text{Not}(x) \text{ Or } \text{Not}(y)$
- $\text{Not}(x \text{ Or } y) = \text{Not}(x) \text{ And } \text{Not}(y)$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.16

16

Simplifying Boolean Functions

- The algebraic laws we considered could be used to **simplify** Boolean functions
- For example, consider the function: $\text{Not}(\text{Not}(x) \text{ And } \text{Not}(x \text{ Or } y))$
 - Can we reduce it to a simpler form?

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.17

17

$\text{Not}(\text{Not}(x) \text{ And } \text{Not}(x \text{ Or } y))$

- $= \text{Not}(\text{Not}(x) \text{ And } (\text{Not}(x) \text{ And } \text{Not}(y))) \dots$ By De Morgan's Law
- $\text{Not}(\text{Not}(x) \text{ And } (\text{Not}(x))) \text{ And } \text{Not}(y) \dots$ By the associative Law
- $\text{Not}(\text{Not}(x) \text{ And } \text{Not}(y)) \dots$ By the idempotent law
- $\text{Not}(\text{Not}(x)) \text{ Or } \text{Not}(\text{Not}(y)) \dots$ By De Morgan's Law
- $x \text{ Or } y \dots$ By double negation

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.18

18

Boolean simplifications like the one we just looked at have significant practical implications

- For example, the original Boolean expression $\text{Not}(\text{Not}(x) \text{ And } \text{Not}(x \text{ Or } y))$ can be implemented in hardware using five logic gates
- Whereas the simplified expression $x \text{ Or } y$ can be implemented using a single logic gate
 - Both expressions deliver the **same functionality**
 - But the latter (i.e., $x \text{ Or } y$) is five times more efficient in terms of cost, energy, and speed of computation

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.19

19

Reducing a Boolean expression into a simpler one is an **art requiring experience and insight**

- Various reduction tools and techniques are available, but the problem remains challenging
- In general, reducing a Boolean expression into its simplest form is an **NP-hard** problem
 - The good news: your circuit doesn't know that! So we still take our best swing
- Even if simplification is hard in general, **synthesis is guaranteed**
 - We can always build some expression from the truth table ... and then simplify when we can

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.20

20

You might not write well every day, but you
can always edit a bad page. You can't edit a
blank page.

Jodi Picoult

SYNTHEZIZING BOOLEAN FUNCTIONS

21

Synthesizing Boolean Functions

- Given a truth table of a Boolean function, how can we construct, or synthesize, a Boolean expression that represents this function?
 - We will look at a **constructive** algorithm to do this
- And, come to think of it, are we guaranteed that every Boolean function represented by a truth table can also be represented by a Boolean expression?
 - Yes!

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.22

22

Let's look at a truth table definition of some three-variable function $f(x,y,z)$

- Our goal is to **synthesize** from these data a Boolean expression that represents this function
- We start by **focusing only** on the truth table's rows in which the function's value is **1**
 - This happens in rows 3, 5, and 7

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.23

23

Think of the truth table as a set of “winning situations”

- For each such row, we can write a little **tripwire clause** that is true only in that one situation:
 - If a variable is 1 in the row, we use the variable (e.g., x)
 - If a variable is 0 in the row, we use its negation (e.g., $\text{Not}(x)$ or $\neg x$)
 - AND them all together
- That AND-clause is like a **perfect fingerprint** for *that row*
 - It matches only that row and fails everywhere else
 - Any mismatch flips at least one literal to false, and an AND needs all of them true
- Then you OR all those “row-fingerprints” together
 - Because you want the function to be 1 if any of the winning situations occurs

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.24

24

Let's look at a truth table definition of some three-variable function $f(x, y, z)$

- For each such row i , we define a Boolean function f_i that returns 0 for all the variable values **except** for the variable values in row i , for which the function returns 1
- Each of these functions f_i can be represented by a **conjunction** (And-ing) of three terms, one term for each variable x , y , and z
 - Each being either the variable (or its negation), depending on whether the value of this variable is 1 (or 0) in row i

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
 COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.25

25

Let's look at a truth table definition of some three-variable function $f(x, y, z)$.

- This process yields three such functions

$$f_3(x, y, z) = (\text{Not}(x)) \text{ And } y \text{ And } (\text{Not}(z))$$

$$f_5(x, y, z) = x \text{ And } \text{Not}(y) \text{ And } (\text{Not}(z))$$

$$f_7(x, y, z) = x \text{ And } y \text{ And } (\text{Not}(z))$$

$$f(x, y, z) = f_3(x, y, z) \text{ Or } f_5(x, y, z) \text{ Or } f_7(x, y, z)$$

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
 COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.26

26

Since these functions describe the only cases in which the Boolean function f evaluates to 1

- We conclude that f can be represented by the Boolean expression
 - $f = f_3 \text{ Or } f_5 \text{ Or } f_7$
- Spelling it out: $(\text{Not } (x) \text{ And } y \text{ And } \text{Not } (z)) \text{ Or } (x \text{ And } \text{Not } (y) \text{ And } \text{Not } (z)) \text{ Or } (x \text{ And } y \text{ And } \text{Not } (z))$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.27

27

Avoiding tedious formality

- The preceding example suggests that **any** Boolean function can be systematically represented by a Boolean expression that has a very specific structure:
 - It is the **disjunction** (Or-ing) of all the **conjunctive** (And-ing) functions f_i whose construction was just described
- This expression, which is the Boolean version of a **sum of products**, is sometimes referred to as the function's **disjunctive normal form** (DNF)

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.28

28

What if the function has many variables?

- And, thus the truth table has exponentially many rows?
 - The resulting DNF may be long and cumbersome
- At that point, Boolean algebra and various reduction techniques can help transform the expression
 - Into a more efficient and workable representation

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.29

29

THE EXPRESSIVE
POWER OF
NAND

COLORADO STATE UNIVERSITY

30

Every computer can be built using nothing more than Nand gates

- There are two ways to support this claim
 - One is to actually build a computer from Nand gates only
 - Another way is to provide a formal proof, which is what we'll do next

NAND is the LEGO brick of logic: with enough pieces, you can build a castle... or a deeply questionable dragon!

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.31

31

Step One

- **Lemma 1:** Any Boolean function can be represented by a Boolean expression containing only And, Or, and Not operators
- PROOF
 - Any Boolean function can be used to generate a corresponding truth table
 - And, as we've just shown, any truth table can be used for synthesizing a DNF, which is an **Or-ing** of **And-ing**s of variables and their **negations**
 - It follows that any Boolean function can be represented by a Boolean expression containing only And, Or, and Not operators

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.32

32

In order to appreciate the significance of this result

- Consider the infinite number of functions that can be defined over integer numbers (rather than binary numbers)
- It would have been nice if every such function could be represented by an algebraic expression involving only addition, multiplication, and negation
- As it turns out, the vast majority of integer functions cannot be expressed using a closed algebraic form
 - For example, $f(x) = 2x$ for $x \neq 7$ and $f(7) = 312$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.33

33

In the world of binary numbers

- Due to the finite number of values that each variable can assume (0 or 1), we do have an attractive property
 - Every Boolean function can be expressed using nothing more than And, Or, and Not operators
- The practical implication is immense: any computer can be built from nothing more than And, Or, and Not gates

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.34

34

But, can we do better than this?

- **Lemma 2:** Any Boolean function can be represented by a Boolean expression containing only Not and And operators
- PROOF
 - According to De Morgan law, the Or operator can be expressed using the Not and And operators
 - Combining this result with Lemma 1, we get the proof

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.35

35

Theorem: Any Boolean function can be represented by a Boolean expression containing only Nand operators

- $\text{Not}(x) = \text{Nand}(x, x)$
 - In words: If you set both the x and y variables of the Nand function to the same value (0 or 1), the function evaluates to the negation of that value
- $\text{And}(x, y) = \text{Not}(\text{Nand}(x, y))$
 - It is easy to show that the truth tables of both sides of the equation are identical
 - We've just shown that Not can be expressed using Nand
 - Combining these two results with Lemma 2, we get that any Boolean function can be represented by a Boolean expression containing only Nand operators

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.36

36

What are the implications? [1/2]

- This remarkable result, may well be called the **fundamental theorem of logic design**
- This stipulates that computers can be built from **one atom** only: a logic gate that realizes the Nand function

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.37

37

What are the implications? [2/2]

- In other words, if we have as many Nand gates as we want, we can **wire them in patterns of activation** that implement any Boolean function
 - All we have to do is figure out the right wiring
- Indeed, most computers today are based on hardware infrastructures consisting of billions of Nand gates (or Nor gates, which have similar generative properties)

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.38

38

In practice, though, we don't have to limit ourselves to Nand gates only

- If electrical engineers and physicists can come up with efficient and low-cost physical implementations of other elementary logic gates, we will happily use them directly as primitive building blocks
- This pragmatic observation does not take away anything from the theorem's importance

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.39

39

40

Logic diagram for a half-adder

A	B	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
 COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.41

41

Logic diagram for a full-adder [1/2]

A	B	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
 COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.42

42

Logic diagram for a full-adder [2/2]

A	B	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.43

43

Ripple adder: Adding multiple bits [1/2]

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.44

44

Ripple adder: Adding multiple bits [2/2]

- This ripple-carry adder gets its name from the way that **the carry ripples from one bit to the next**
 - It's like doing the wave
- This works fine, but you can see that there are delays per bit, which adds up fast if we're building a 32- or 64-bit adder
- These delays are substantially alleviated in the **carry lookahead adder**
 - Reduces addition latency by *predicting* carry bits in advance using parallel "generate" and "propagate" logic, rather than waiting for carries to ripple through each bit stage

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.45

45

The contents of this slide-set are based on the following references

- Noam Nisan and Shimon Schocken. *The Elements of Computing Systems: Building a Modern Computer from First Principles*. 2nd Edition. ISBN-10/ ISBN-13: 0262539802 / 978-0262539807. MIT Press. [Chapter 1-2, Appendix A]
- Randall Hyde. *Write Great Code, Volume 1*, 2nd Edition: Understanding the Machine 2nd Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 2]
- [https://en.wikipedia.org/wiki/Adder_\(electronics\)](https://en.wikipedia.org/wiki/Adder_(electronics))

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

BOOLEAN LOGIC & ALGEBRA

L6.46

46