CS253: Software Development with C++

Fall 2022

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
3823749676
2013365715
1049371555

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
916356955
1745897546
372200098
622739756
1942154817

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
976991281
1605237031
891772347
433257922
1597398376

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1714901890555345689
1794457219
1491516604
461242362
1667087653
1480877579

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
597287987
1280631431
1491350583
1847604344
72673988

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 50 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
6 1 5 1 6 6 1 6 5 1 2 3 1 2 1 2 6 2 5 4 1 4 4 1 6 1 3 1 2 2 5 4 4 4 5 5 6 3 3 1 
1 6 1 3 1 2 3 5 5 4 5 6 3 3 2 4 6 4 3 3 6 4 5 5 3 1 1 4 2 2 3 3 4 4 5 1 3 6 6 1 
5 5 6 2 6 5 1 6 6 5 6 5 5 5 4 1 3 3 1 2 2 2 1 1 1 4 6 1 1 6 4 2 6 2 5 3 5 6 2 6 
4 3 4 4 5 2 3 4 5 4 5 6 6 3 4 5 5 3 5 2 4 4 3 6 5 6 1 1 2 6 1 4 2 2 1 6 6 3 5 6 
5 2 3 3 1 6 2 4 5 5 2 1 4 3 6 2 5 2 3 4 2 3 1 1 5 4 2 5 4 6 4 3 5 2 5 4 4 2 2 2 
1 4 4 5 1 4 2 4 5 3 4 3 4 6 5 1 6 5 1 4 1 2 4 6 2 5 5 5 6 3 5 5 4 6 2 5 1 4 2 2 
6 2 4 3 3 2 1 4 2 3 2 1 5 1 1 3 3 3 2 2 1 6 1 3 3 6 1 6 1 3 6 4 2 3 6 1 4 1 5 4 
6 5 3 4 2 4 6 4 6 2 5 4 5 2 5 4 5 1 6 2 6 6 6 3 4 5 4 4 2 6 2 3 4 6 1 2 3 3 4 6 
3 3 3 4 3 4 4 6 6 4 6 6 1 4 1 5 6 4 1 1 4 4 5 2 2 2 5 1 5 2 1 2 5 2 2 1 5 1 3 5 
4 5 1 6 5 1 1 2 5 3 2 1 4 1 4 4 5 2 2 4 2 6 6 2 3 5 1 4 6 4 1 3 1 5 5 1 3 5 2 4 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
20.267 21.714 18.146 23.666 19.263 19.048 22.535 22.868 21.111 18.298 
20.696 20.848 21.573 18.844 21.416 23.740 18.770 21.220 20.928 22.514 
24.581 21.164 21.349 21.282 18.716 21.004 23.589 24.644 19.725 24.212 
22.518 24.130 22.669 21.870 19.604 23.272 23.672 19.766 18.715 22.096 
24.811 22.999 21.501 18.693 19.436 19.387 22.906 18.106 24.981 19.890 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 42.0012%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
14: 
16: 
17: 
18: ###
19: ###########
20: ####################
21: ##########################
22: ####################
23: ##########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: iRryAXaoB~dG`JNzOuIztWmFzWyMuG^J
Password: VP]GwhOry`jwUbPKzaSNM\^hOye|AlbO
Password: Cvg^WGOuw_]hsrr|`hWecIGtbCLH|NQH
Password: bVuYhvBYuu^mwYkgjUlR~JGQ\Qu\hAHM
Password: omiq^H~XcmKCnrPtcyEJr~qVGksIwbFo
Password: V|BeJuC]{]HPTbX{XyFmfYB|SkaTzaeR
Password: ~{|VHqalsifj~opkp`yMvc^^^IcvRGWY
Password: WOirJx`vf}hmjK\WcLDQIiLY|kfnKyQF

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.