
1

Chapter 6
Programming

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS 270 - Fall Semester 2015

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS 270 - Fall Semester 2015

Solving Problems using a Computer
Methodologies for creating computer programs
that perform a desired function.
Problem Solving
n  How do we figure out what to tell the computer to do?
n  Convert problem statement into algorithm,

using stepwise refinement.
n  Convert algorithm into LC-3 machine instructions.

Debugging
n  How do we figure out why it didn’t work?
n  Examine registers and memory, set breakpoints, etc.

Time spent on the first can reduce time spent on the second!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS 270 - Fall Semester 2015

Stepwise Refinement

Also known as systematic decomposition.
Start with problem statement:
 “We wish to count the number of occurrences of a

character in a file. The character in question is to be
input from the keyboard; the result is to be displayed
on the monitor.”

Decompose task into a few simpler subtasks.
Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS 270 - Fall Semester 2015

Problem Statement
Because problem statements are written in
English, they are sometimes ambiguous and/or
incomplete.
n  Where is “file” located? How big is it, or how do I

know when I’ve reached the end?
n  How should final count be printed? A decimal

number?
n  If the character is a letter, should I count both

upper-case and lower-case occurrences?
How do you resolve these issues?
n  Ask the person who wants the problem solved, or
n  Make a decision and document it.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS 270 - Fall Semester 2015

Three Basic Constructs
There are three basic ways to decompose a
task:

Task

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
condition

Subtask

Test
condition

Sequential Conditional Iterative

True

True

False
False

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS 270 - Fall Semester 2015

Sequential

Do Subtask 1 to completion, then do Subtask 2
to completion, etc.

Get character
input from
keyboard

Examine file and
count the number
of characters that

match

Print number
to the screen

Count and print the
occurrences of a
character in a file

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS 270 - Fall Semester 2015

Conditional

If condition is true, do Subtask 1;
else, do Subtask 2.

Test character.
If match, increment

counter.
Count = Count + 1

file char
= input?

True False

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS 270 - Fall Semester 2015

Iterative

Do Subtask over and over,
as long as the test condition is true.

Check each element of
the file and count the

characters that match.

Check next char and
count if matches.

more chars
to check?

True

False

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS 270 - Fall Semester 2015

Problem Solving Skills
Learn to convert problem statement
into step-by-step description of subtasks.
Like a puzzle, or a “word problem” from
grammar school math.

•  What is the starting state of the system?
•  What is the desired ending state?
•  How do we move from one state to another?

n  Recognize English words that correlate to three basic
constructs:

•  “do A then do B” ⇒ sequential
•  “if G, then do H” ⇒ conditional
•  “for each X, do Y” ⇒ iterative
•  “do Z until W” ⇒ iterative

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS 270 - Fall Semester 2015

LC-3 Control Instructions
How do we use LC-3 instructions to encode
the three basic constructs?
Sequential
n  Instructions naturally flow from one to the next, so no

special instruction needed to go from one sequential
subtask to the next.

Conditional and Iterative
n  Create code that converts condition into N, Z, or P.

Example: “Is R0 = R1?”
Code: Subtract R1 from R0; if equal, Z bit will be set.

n  Use BR instruction to transfer control to proper subtask.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS 270 - Fall Semester 2015

Code for Conditional

Generate
Condition

Instruction
A

0000B

Subtask 1

C
Subtask 2

Next
Subtask

D

? C

0000 111 D

Subtask 1

Test
Condition

True False

Subtask 2

Next
Subtask

Exact bits depend
on condition
being tested

PC offset to
address C

PC offset to
address D

Unconditional branch
to Next Subtask

Assuming all addresses are close enough that PC-relative branch can be used.

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS 270 - Fall Semester 2015

Code for Iteration

Generate
Condition

Instruction
A

0000

B
Subtask

C
Next

Subtask

? C

0000 111 A

Subtask

Test
Condition

True

False

Next
Subtask

Exact bits depend
on condition
being tested

PC offset to
address C

PC offset to
address A

Unconditional branch
to retest condition

Assuming all addresses are on the same page.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS 270 - Fall Semester 2015

Example: Counting Characters

Input a character. Then
scan a file, counting
occurrences of that
character. Finally, display
on the monitor the number
of occurrences of the
character (up to 9).

START

STOP

Initialize: Put initial values
into all locations that will be
needed to carry out this
task.

- Input a character.
- Set up a pointer to the first
location of the file that will
be scanned.
- Get the first character from
the file.
- Zero the register that holds
the count.

START

STOP

Scan the file, location by
location, incrementing the
counter if the character
matches.

Display the count on the
monitor.

A

B

CInitial refinement: Big task into
three sequential subtasks.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS 270 - Fall Semester 2015

Refining B

Scan the file, location by
location, incrementing the
counter if the character
matches.

B

Test character. If a match,
increment counter. Get next
character.

B1

Done?

No

Yes

B

Refining B into iterative construct.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS 270 - Fall Semester 2015

Refining B1

Refining B1 into sequential subtasks.

Test character. If a match,
increment counter. Get next
character.

B1

Done?

No

Yes

B

Get next character.

B1

Done?

No

Yes

Test character. If matches,
increment counter.

B2

B3

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS 270 - Fall Semester 2015

Refining B2 and B3

R1 = M[R3]

Done?

No

Yes

B2

B3

R3 = R3 + 1

R1 = R0?

R2 = R2 + 1

NoYes

Get next character.

B1

Done?

No

Yes

Test character. If matches,
increment counter.

B2

B3

Conditional (B2) and sequential (B3).
Use of LC-2 registers and instructions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS 270 - Fall Semester 2015

The Last Step: LC-3 Instructions
Use comments to separate into modules and
to document your code.

R1 = M[R3]

Done?

No

Yes

B2

B3

R3 = R3 + 1

R1 = R0?

R2 = R2 + 1

NoYes

; Look at each char in file.
0001100001111100 ; is R1 = EOT?
0000010xxxxxxxxx ; if so, exit loop
; Check for match with R0.
1001001001111111 ; R1 = -char
0001001001100001
0001001000000001 ; R1 = R0 – char
0000101xxxxxxxxx ; no match, skip incr
0001010010100001 ; R2 = R2 + 1
; Incr file ptr and get next char
0001011011100001 ; R3 = R3 + 1
0110001011000000 ; R1 = M[R3]

Don’t know
PCoffset bits until

all the code is done

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS 270 - Fall Semester 2015

Debugging

You’ve written your program and it doesn’t work.
Now what?
What do you do when you’re lost in a city?

Drive around randomly and hope you find it?
P Return to a known point and look at a map?
P In debugging, the equivalent to looking at a map

is tracing your program.
•  Examine the sequence of instructions being executed.
•  Keep track of results being produced.
•  Compare result from instructions to the expected result.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS 270 - Fall Semester 2015

Debugging Operations
Any debugger should provide means to:
1.  Display values in memory and registers.
2.  Deposit values in memory and registers.
3.  Execute instruction sequence in a program.
4.  Stop execution when desired.

1.  Different programming levels offer different tools.
n  High-level languages (C, Java, ...)

usually have source-code debugging tools.
n  For debugging at the machine instruction level:

•  simulators
•  operating system “monitor” tools
•  in-circuit emulators (ICE)

n  plug-in hardware replacements that give instruction-level
control

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS 270 - Fall Semester 2015

LC-3 Simulator

set/display
registers

and memory

execute
instruction

sequences

stop execution,
set breakpoints

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS 270 - Fall Semester 2015

Types of Errors
Syntax Errors
n  You made a typing error that resulted in an illegal

operation.
n  Not usually an issue with machine language, because

almost any bit pattern corresponds to a legal instruction.
n  In high-level languages, these are often caught during

the translation from language to machine code.
Logic Errors
n  Your program is legal, but wrong, so the results don’t

match the problem statement.
n  Trace the program to see what’s really happening and

determine how to get the proper behavior.
Data Errors
n  Input data is different than what you expected.
n  Test the program with a wide variety of inputs.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS 270 - Fall Semester 2015

Tracing the Program
Execute the program one piece at a time, examining register
and memory to see results at each step.
Single-Stepping
n  Execute one instruction at a time.
n  Tedious, but useful to help you verify each step of your program.

Breakpoints
n  Tell the simulator to stop executing when it reaches

a specific instruction.
n  Check overall results at specific points in the program.

Quickly execute sequences to get an overview of the behavior.
Quickly execute sequences that your believe are correct.

Watchpoints
n  Tell the simulator to stop when a register or memory location changes

or when it equals a specific value.
n  Useful when you don’t know where or when a value is changed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS 270 - Fall Semester 2015

Example 1: Multiply
This program is supposed to multiply the two
unsigned integers in R4 and R5.

x3200 0101010010100000
x3201 0001010010000100
x3202 0001101101111111
x3203 0000011111111101
x3204 1111000000100101

clear R2

add R4 to R2

decrement R5

R5 = 0?

HALT

No

Yes
Set R4 = 10, R5 =3.

Run program.
Result: R2 = 40, not 30.

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25

Debugging the Multiply Program
PC R2 R4 R5

x3200 -- 10 3
x3201 0 10 3
x3202 10 10 3
x3203 10 10 2
x3201 10 10 2
x3202 20 10 2
x3203 20 10 1
x3201 20 10 1
x3202 30 10 1
x3203 30 10 0
x3201 30 10 0
x3202 40 10 0
x3203 40 10 -1
x3204 40 10 -1

40 10 -1

PC and registers
at the beginning

of each instruction PC R2 R4 R5
x3203 10 10 2
x3203 20 10 1
x3203 30 10 0
x3203 40 10 -1

40 10 -1

Single-stepping

Breakpoint at branch (x3203)

Executing loop one time too many.
Branch at x3203 should be based
on Z bit only, not Z and P.

Should stop looping here!

CS 270 - Fall Semester 2015

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS 270 - Fall Semester 2015

Example 2: Sum an Array of Numbers
This program is supposed to sum the numbers
stored in 10 locations beginning with x3100,
leaving the result in R1.

R4 = 0?

HALT

No

Yes

R1 = 0
R4 = 10

R2 = x3100

R1 = R1 + M[R2]
R2 = R2 + 1

R4 = R4 - 1

x3000 0101001001100000
x3001 0101100100100000
x3002 0001100100101010
x3003 0010010011111100
x3004 0110011010000000
x3005 0001010010100001
x3006 0001001001000011
x3007 0001100100111111
x3008 0000001111111011
x3009 1111000000100101

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS 270 - Fall Semester 2015

Debugging the Summing Program
Running the the data below yields R1 = x0024,
but the sum should be x8135. What happened?

Address Contents
x3100 x3107
x3101 x2819
x3102 x0110
x3103 x0310
x3104 x0110
x3105 x1110
x3106 x11B1
x3107 x0019
x3108 x0007
x3109 x0004

PC R1 R2 R4
x3000 -- -- --
x3001 0 -- --
x3002 0 -- 0
x3003 0 -- 10
x3004 0 x3107 10

Start single-stepping program...

Should be x3100!

Loading contents of M[x3100], not address.
Change opcode of x3003
from 0010 (LD) to 1110 (LEA).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS 270 - Fall Semester 2015

Example 3: Looking for a 5
This program is supposed to set
R0=1 if there’s a 5 in one ten
memory locations, starting at x3100.
Else, it should set R0 to 0.

R2 = 5?

HALT

No

Yes

R0 = 1, R1 = -5, R3 = 10
R4 = x3100, R2 = M[R4]

R4 = R4 + 1
R3 = R3-1

R2 = M[R4]

x3000 0101000000100000
x3001 0001000000100001
x3002 0101001001100000
x3003 0001001001111011
x3004 0101011011100000
x3005 0001011011101010
x3006 0010100000001001
x3007 0110010100000000
x3008 0001010010000001
x3009 0000010000000101
x300A 0001100100100001
x300B 0001011011111111
x300C 0110010100000000
x300D 0000001111111010
x300E 0101000000100000
x300F 1111000000100101
x3010 0011000100000000

R3 = 0?

R0 = 0

Yes

No

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS 270 - Fall Semester 2015

Debugging the Fives Program
Running the program with a 5 in location x3108
results in R0 = 0, not R0 = 1. What happened?

Address Contents
x3100 9
x3101 7
x3102 32
x3103 0
x3104 -8
x3105 19
x3106 6
x3107 13
x3108 5
x3109 61

Perhaps we didn’t look at all the data?
Put a breakpoint at x300D to see
how many times we branch back.

PC R0 R2 R3 R4
x300D 1 7 9 x3101
x300D 1 32 8 x3102
x300D 1 0 7 x3103

0 0 7 x3103 Didn’t branch
back, even
though R3 > 0?

Branch uses condition code set by
loading R2 with M[R4], not by decrementing R3.
Swap x300B and x300C, or remove x300C and
branch back to x3007.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS 270 - Fall Semester 2015

Example 4: Finding First 1 in a Word
This program is supposed to return (in R1) the bit
position of the first 1 in a word. The address of the word
is in location x3009 (just past the end of the program). If
there are no ones, R1 should be set to –1.

R1 = 15
R2 = data

R2[15] = 1?

decrement R1
shift R2 left one bit

HALT

x3000 0101001001100000
x3001 0001001001101111
x3002 1010010000000110
x3003 0000100000000100
x3004 0001001001111111
x3005 0001010010000010
x3006 0000100000000001
x3007 0000111111111100
x3008 1111000000100101
x3009 0011000100000000

R2[15] = 1?

Yes

Yes

No

No

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS 270 - Fall Semester 2015

Debugging the First-One Program
Program works most of the time, but if data is
zero, it never seems to HALT.

PC R1
x3007 14
x3007 13
x3007 12
x3007 11
x3007 10
x3007 9
x3007 8
x3007 7
x3007 6
x3007 5

Breakpoint at backwards branch (x3007) PC R1
x3007 4
x3007 3
x3007 2
x3007 1
x3007 0
x3007 -1
x3007 -2
x3007 -3
x3007 -4
x3007 -5

If no ones, then branch to HALT
never occurs!
This is called an “infinite loop.”
Must change algorithm to either
(a) check for special case (R2=0), or
(b) exit loop if R1 < 0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS 270 - Fall Semester 2015

Debugging: Lessons Learned
Trace program to see what’s going on.
n  Breakpoints, single-stepping

When tracing, make sure to notice what’s
really happening, not what you think should
happen.
n  In summing program, it would be easy to not notice

that address x3107 was loaded instead of x3100.
Test your program using a variety of input data.
n  In Examples 3 and 4, the program works for many (but not

all) data sets.
n  Be sure to test extreme cases (all ones, no ones, ...).

