Chapter 6
Programming

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

/oD N\
\ {‘r) Devices

CS 270 - Fall Semester 2015 2

Gopyright & . Inc. Permission req pr or display.

Solving Problems using a Computer

@ Methodologies for creating computer programs
that perform a desired function.

@ Problem Solving
= How do we figure out what to tell the computer to do?

= Convert problem statement into algorithm,
using stepwise refinerment.
= Convert algorithm into LC-3 machine instructions.
o Debugging
= How do we figure out why it didn’ t work?
= Examine registers and memory, set breakpoints, etc.

‘ Time spent on the first can reduce time spent on the second!

CS 270 - Fall Semester 2015 3

Gopyright & . Inc. Permission req pr or display.

Stepwise Refinement

@ Also known as systermatic decormposition.
o Start with problem statement:

“We wish to count the number of occurrences of a
character in a file. The character in question is to be
input from the keyboard; the result is to be displayed
on the monitor.”

@ Decompose task into a few simpler subtasks.

@ Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

CS 270 - Fall Semester 2015

Copyright ©° Inc. Permission a o or display.

Problem Statement

@ Because problem statements are written in
English, they are sometimes ambiguous and/or
incomplete.

» Where is “file” located? How big is it, or how do |
know when |’ ve reached the end?

=« How should final count be printed? A decimal
number?

« |f the character is a letter, should | count both
upper-case and lower-case occurrences?

@ How do you resolve these issues?
= Ask the person who wants the problem solved, or

Copyright ©° Inc. Permission a o or display.

Three Basic Constructs

@ There are three basic ways to decompose a
task:

|

‘ Subtask 1 ‘ ‘ Subtask 2 ‘
Subtask 2 Subtask

= Make a decision and document it. Sequential Conditional Iterative
CS 270 - Fall Semester 2015 CS 270 - Fall Semester 2015 6
Sequential Conditional
@ Do Subtask 1 to completion, then do Subtask 2 o If condition is true, do Subtask 1;
to completion, etc. i else, do Subtask 2.
Get character
input from
keyboard

! I

Count and print the Examine file and
occurrences of a d count the number
character in a file of characters that

l match

l

Print number
to the screen

CS 270 - Fall Semester 2015

file char False

=input?

True

)

Test character.

If match, increment ﬁ
counter.

Count = Count + 1

J

CS 270 - Fall Semester 2015 8

Copyright ©° Inc. Permission a o or display.

Iterative

@ Do Subtask over and over,
as long as the test condition is true.

}

more chars
to check?

True

Check each element of
the file and count the d
characters that match.

l Check next char and
count if matches.

I

CS 270 - Fall Semester 2015 9

Copyright ©° Inc. Permission a o or display.

Problem Solving Skills

@ Learn to convert problem statement

into step-by-step description of subtasks.
Like a puzzle, or a “word problem” from
grammar school math.

» What is the starting state of the system?

» What is the desired ending state?

* How do we move from one state to another?

=« Recognize English words that correlate to three basic
constructs:

- “do A then do B” = sequential

+ “if G, then do H” = conditional

+ “for each X, do Y” = iterative

+ “do Z until W” = iterative

CS 270 - Fall Semester 2015 10

‘Copyright © The McGravHil Companies, Inc. Permission required or reproduction or dsplay.

LC-3 Control Instructions

@ How do we use LC-3 instructions to encode
the three basic constructs?
@ Sequential
= Instructions naturally flow from one to the next, so no
special instruction needed to go from one sequential
subtask to the next.
o Conditional and lterative
= Create code that converts condition into N, Z, or P.

Example: “Is RO = R1?”
Code: Subtract R1 from RO; if equal, Z bit will be set.

= Use BR instruction to transfer control to proper subtask.

CS 270 - Fall Semester 2015 "

Copyright © Inc. Permission oq pr or display.

Code for Conditional

Exact bits depend
on condition
being tested

PC offset to
address C

Instruction

Generate
T Test False Condition
onditiol B uunu‘r - ‘ r Y4

¢

Subtask 1‘

Subtask 2‘ :> Subtask 1

000gfuii] by

Subtask 2
Unconditional branch
Next to Next Subtask
Subtask Next PC offset to
Subtask address D

Assuming all addresses are close enough that PC-relative branch can be used.

.

CS 270 - Fall Semester 2015 12

Copyright ©° Inc. Permission req o or display.

Code for Iteration

Exact bits depend

on condition Instruction
being tested
False Y Generate
Condition
0000f-2 [c/
B
:> Subtask
oo00f11| A
[}
Next
Subtask
Unconditional branch

to retest condition

Assuming all addresses are on the same page.

CS 270 - Fall Semester 2015

PC offset to
address C

PC offset to
address A

Copyright ©°

Example:

Inc. Permission req o or display.

Counting Characters

Al Initialize: Put initial values

into all locations that will be
needed to carry out this
task.

Input a character. Then
scan a file, counting
occurrences of that
character. Finally, display
on the monitor the number
of occurrences of the
character (up to 9).

-Input a character.
- Set up a pointer to the first
location of the file that will
be scanned.
- Get the first character from
the file.
- Zero the register that holds
the count.

i

Scan the file, location by
location, incrementing the
counter if the character
matches.

Initial refinement: Big

’ task into C | pisplay the count on the
three sequential subtasks. mor

CS 270 - Fall Semester 2015

‘Copyright © The McGravHil Companies, Inc. Permission required or reproduction or dsplay.

Refining B

‘Copyright © Th McGrav-Hil Companies, In. Permission required or reproduction or dsplay.

Refining B1

Yes_Done?

No
B1

B1

No

increment counter.

B
‘ Yes) Done?
B - N
Scan the file, location by B1 No
location, incrementing the
counter if the character Test character. If a match,
matches. increment counter. Get next
7 character.

v

Refining B into iterative construct.

CS 270 - Fall Semester 2015 15

Test character. If a match,
increment counter. Get next
character.

!

¥
2| Test character. If matches, ‘

B3[Get next character.

}7

Refining B1 into sequential subtasks. ‘

CS 270 - Fall Semester 2015

Copyright ©° Inc. Permission a o or display.

Copyright ©° Inc. Permission a o or display.

The Last Step: LC-3 Instructions

@ Use comments to separate into modules and
to document your code.

; Look at each char in file.

Yes | 0001100001111100 ; is Rl = EOT?
[| 000001 0xxxxx: x ; if so, exit loop
B2) ; Check for match with RO.
1001001001111181 ; R1 = -char
E1 § 00010010011000
BZ e o ——{___ | 0001001000000001 ; Rl = RO - char
increment counter. e = ‘ RETRITT 0000101xxxxxxxxx\ ; no match, skip incr
] Got noxt charcctor, L | | |0001010010100001\ ; R2 = R2 + 1
R3=R3+1 ; Incr file ptr\and get next char
83 | 0001011011100001\ \ R3 = R3 + 1
1 [Ri=mR3] |+ 0110001011000000\) R1 = M[R3]
[Ri=mRy] 1
Conditional (B2) and sequential (B3). l Don’t know
: : . PCoffset bits until
Use of LC-2 registers and instructions. all the code is done
CS 270 - Fall Semester 2015 17 CS 270 - Fall Semester 2015 18
Copyrght € The McGrawil Companies, . Parnision roqlred o repodicton or dply, Copyrght © The McGrawil Companies, . Parmision roqlred o repodicton or dply,

@ You'’ ve written your program and it doesn’ t work.
o Now what?
@ What do you do when you’ re lost in a city?

x Drive around randomly and hope you find it?

v'Return to a known point and look at a map?

VIn debugging, the equivalent to looking at a map
is tracing your program.

. Examine the sequence of instructions being executed.
. Keep track of results being produced.
. Compare result from instructions to the expected result.

CS 270 - Fall Semester 2015 19

@ Any debugger should provide means to:

1. Display values in memory and registers.
> Deposit values in memory and registers.
s. Execute instruction sequence in a program.
+. Stop execution when desired.
. Different programming levels offer different tools.
= High-level languages (C, Java, ...)
usually have source-code debugging tools.

« For debugging at the machine instruction level:

* simulators

- operating system “monitor” tools

* in-circuit emulators (ICE)

= plug-in hardware replacements that give instruction-level
control

CS 270 - Fall Semester 2015 20

Copyright ©° Inc. Permission a o or display.

LC-3 Simulator

stop execution,

set breakpoints
execute

instruction C LC3 Simulator - multiply.obj =101 x|

sequences File Exec late Help 7"
il | @lsDmlb| o[<]
RO %0000 O R4 x0000 O PC %3200 12800
RL x0000 0 RS x0000 0 IR %0000 0
R2 0000 O R6 x0000 O PSR xB002 -3276
R3 %0000 0 R7 x0000 0 cco oz
0 0101010010100000
%3201 0001010010000100 x1484 ADD RZ, R2, R4
%3202 0001101101111111 x1B7F wo RS, R, #-1 |
%3203 0000011111111101 x07FD BRZP x3201
%3204 1111000000100101 xF025 TRAP HALT
%3205 0000000000000000 %0000 NOP
%3206 0000000000000000 %0000 NOP |
[multiply..obj 0instructions executed [1dle 7
CS 270 - Fall Semester 2015 21

Copyright ©° Inc. Permission a o or display.

Types of Errors

@ Syntax Errors
= You made a typing error that resulted in an illegal
operation.

= Not usually an issue with machine language, because

almost any bit pattern corresponds to a legal instruction.

= In high-level languages, these are often caught during

the translation from language to machine code.

9 Logic Errors
= Your program is legal, but wrong, so the results don’ t
match the problem statement.

= Trace the program to see what’ s really happening and

determine how to get the proper behavior.
o Data Errors
= Input data is different than what you expected.
= Test the program with a wide variety of inputs.

CS 270 - Fall Semester 2015

22

‘Copyright © The McGravHil Companies, Inc. Permission required or reproduction or dsplay.

Tracing the Program

@ Execute the program one piece at a time, examining register
and memory to see results at each step.
o Single-Stepping
= Execute one instruction at a time.
= Tedious, but useful to help you verify each step of your program.

o Breakpoints
= Tell the simulator to stop executing when it reaches
a specific instruction.

= Check overall results at specific points in the program.
o Quickly execute sequences to get an overview of the behavior.
@ Quickly execute sequences that your believe are correct.
o Watchpoints
= Tell the simulator to stop when a register or memory location changes
or when it equals a specific value.
= Useful when you don’ t know where or when a value is changed.

CS 270 - Fall Semester 2015 23

‘Copyright © Th McGrav-Hil Companies, In. Permission required or reproduction or dsplay.

Example 1: Multiply

@ This program is supposed to multiply the two
unsigned integers in R4 and R5.

add R4 to R2
decrement R5

x3200 0101010010100000
%3201 0001010010000100
x3202 0001101101111111
%3203 0000011111111101
%3204 1111000000100101

Set R4 =10, R5 =3.
Run program.
Result: R2 = 40, not 30

CS 270 - Fall Semester 2015

24

Copyright ©°

Debugging the Multiply Program

PC and registers

at the beginning
of each instruction

Single-stepping

PC | R2 | R4 | RS /
x3200 10 3 Breakpoint at branch (x3203)
x3201 ol 10 3 j
x3202 10 10 3 PC R2 | R4 | R5
x3203 | 10| 10 2 x3203 | 10| 10 2
x3201 | 10] 10] 2 x3203 | 20| 10| 1
x3202 | 20| 10] 2 x3203,| 30| 10| o0
x3203 | 20| 10] 1 x3203|| 40| 10| -1
x3201 | 20| 10 1 20| 10| 1
x3202 | 30| 10 1 _
{——Should stop looping here!
x3203 | 30| 10 0
x3201 | 30| 10 0
%3202 40| 10 o| Executing loop one time too many.
%3203 | 40| 10| -1| Branch atx3203 should be based
%3204 | 40| 10 1| onZbitonly, notZand P.
40| ch®70- Fall Semester 2015 25

Copyright ©° Inc. Permission a

Example 2: Sum an Array of Numbers
@ This program is supposed to sum the numbers
stored in 10 locations beginning with x3100,

leaving the result in R1.

() %3000
R2 = x3100 x3001

%3002
%3003
%3004
%3005
%3006
%3007
%3008
%3009

R1=R1+M[R2]
R2=R2+1

0101001001100000
0101100100100000
0001100100101010
0010010011111100
0110011010000000
0001010010100001
0001001001000011
0001100100111111
0000001111111011
1111000000100101

CS 270 - Fall Semester 2015

26

Copyright © The McGrav-Hil Companles, nc. Permission

roquired for reproduction o display.

Debugging the Summing Program

@ Running the the data below yields R1 = x0024,
but the sum should be x8135. What happened?

Address | Contents Start single-stepping program...
x3100 x3107 pC |R1] R2 | Ra
x3101 x2819 ol = —T
x3102 x0110 @001 | o I =
x3103 x0310 x3002 0 0
x3104 x0110 x3003 0 10
x3105 x1110 x3004 | 0|x3107| 10
|
x3106 x11B1 Should be x3100!
x3107 x0019 Loading contents of M[x3100], not address.
x3108 x0007 Change opcode of x3003
x3109 x0004 from 0010 (LD) to 1110 (LEA).

CS 270 - Fall Semester 2015 27

Copyright © The McGrav-Hil Companles, Inc. Permission

roquired for reproduction o display.

Example 3: Looking for a 5

@ This program is supposed to set
RO=1 if there’ s a 5 in one ten
memory locations, starting at x3100,

@ Else, it should set RO to 0.

R0=1,R1=-5,R3=10
R4 = x3100, R2 = M[R4]

R4=R4+1
R3 = R3-1
R2 = M[R4]

CS 270 - Fall Semester 2015

%3000
%3001
%3002
%3003
%3004
%3005
%3006
%3007
%3008
%3009
x300A
x300B
x300C
x300D
x300E
x300F
%3010

0101000000100000
0001000000100001
0101001001100000
0001001001111011
0101011011100000
0001011011101010
0010100000001001
0110010100000000
0001010010000001
0000010000000101
0001100100100001
0001011011111111
0110010100000000
0000001111111010
0101000000100000
1111000000100101
0011000100000000

28

Copyright ©° Inc. Permission a o or display.

Debugging the Fives Program

@ Running the program with a 5 in location x3108
results in RO = 0, not RO = 1. What happened?

Perhaps we didn’ t look at all the data?

AddressRlContents Puta Ereakpoint at x300D to see

x3100 9 how many times we branch back.

x3101 7

PC RO | R2 | R3 | R4

51102 £2 x300D 1 7| 9| x3101

x3103 0 x300D | 1| 32| 8] x3102

x3104 -8 x300D 1 0| 7/ x3103 .

x3105 19 0] o] 7]x3103 E;"C:“et\”;anmh

x3106 6 though R3 > 0?

%3107 13 Branch uses condition code set by

loading R2 with M[R4], not by decrementing R3.
eSi08 5 | swap x300B and x300C, or remove x300C and
x3109 61 branch back to x3007.

CS 270 - Fall Semester 2015 29

Copyright ©° Inc. Permission a o or display.

Example 4: Finding First 1 in a Word

@ This program is supposed to return (in R1) the bit
position of the first 1 in a word. The address of the word
is in location x3009 (just past the end of the program). If
there are no ones, R1 should be set to —1.

%3000 0101001001100000
%3001 0001001001101111
x3002 1010010000000110
- %3003 0000100000000100

pro— %3004 0001001001111111
x3005 0001010010000010
%3006 0000100000000001
%3007 0000111111111100
x3008 1111000000100101
%3009 0011000100000000

CS 270 - Fall Semester 2015 30

No

‘Copyright © The McGravHil Companies, Inc. Permission required or reproduction or dsplay.

Debugging the First-One Program

@ Program works most of the time, but if data is
zero, it never seems to HALT.

R RCRIRY Breakpoint at backwards branch (x3007)
x3007 | 14 x3007 | 4
x3007 | 13 x3007 | 3 If no ones, then branch to HALT
x3007 | 12 x3007 | 2 never occurs!
3007 | 11 3007 | 1 This is called an “ipﬁnite Iogp.”
%3007 | 10 3007 | o Must change algorithm to either
i | 9 AR (a) check for special case (R2=0), or

(b) exit loop if R1 < 0.

x3007 8 x3007 | -2
x3007 | 7 x3007 | -3
x3007 | 6 x3007 | -4
x3007 | 5 x3007 | -5

CS 270 - Fall Semester 2015 31

‘Copyright © Th McGrav-Hil Companies, In. Permission required or reproduction or dsplay.

Debugging: Lessons Learned

o Trace program to see what’ s going on.
= Breakpoints, single-stepping

o When tracing, make sure to notice what’ s
really happening, not what you think should
happen.
= In summing program, it would be easy to not notice

that address x3107 was loaded instead of x3100.
o Test your program using a variety of input data.

= In Examples 3 and 4, the program works for many (but not
all) data sets.

= Be sure to test extreme cases (all ones, no ones, ...).

CS 270 - Fall Semester 2015 32

