Chapter 10
And, Finally...
The Stack

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright© . Inc P or display.

Stack: An Abstract Data Type

@ An important abstraction that you will encounter
in many applications.

@ The fundamental model for execution of C, Java,
Fortran, and many other languages.

@ We will describe three uses of the stack:
= Interrupt-Driven I/O
« The rest of the story...
= Evaluating arithmetic expressions
- Store intermediate results on stack instead of in registers

« Data type conversion
= 2’s comp binary to ASCII strings

CS 270 - Fall Semester 2015

Copyright ® Companies, Inc. producton or display.

Stacks

@ A LIFO (last-in first-out) storage structure.

= The first thing you put in is the last thing you take out.
= The last thing you put in is the first thing you take out.

@ This means of access is what defines a stack,
not the specific implementation.

@ Two main operations:

PUSH: add an item to the stack
POP: remove an item from the stack

CS 270 - Fall Semester 2015

Copyright © e P or display.

A Physical Stack

@ Coin rest in the arm of an automobile

MY

NN\

Initial State After After Three After
One Push More Pushes One Pop

CS 270 - Fall Semester 2015 4

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

A Hardware Implementation

@ Data items move between registers

Empty: Empty: Empty: Empty:
[111]] |+ TOP #18 |+ TOP #12 |+<TOP #31 ~—ToP
111117 111111 #5 #18
111111 111111 #31 111111
111111 111111 #18 11111
111111 111111 111111 111111

Initial State After After Three After
One Push More Pushes Two Pops
CS 270 - Fall Semester 2015 5

Copyright & . Inc P or display.

A Software Implementation

@ Data items don't move in memory,
just our idea about there the TOP of the stack is.

1111117 111117 #12 |+<TOP #12

111111 111117 #5 #5

111117 111117 #31 #31 |+ TOP

1111 #18 |« TOP #18 #18

«~TOP

[x4000 |R6 [x3FFF |R6 [x3FFC |Ré [x3FFE |Re

Initial State After After Three After
One Push More Pushes Two Pops

By convention, R6 holds the Top of Stack (TOS) pointer.

CS 270 - Fall Semester 2015 6

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Basic Push and Pop Code

@ For our implementation, stack grows downward
(when item added, TOS moves closer to 0)

PUSH

ADD R6, R6, #-1 ; decrement stack pointer
STR RO, R6, #0 ; store data (RO) to TOS

POP

LDR RO, R6, #0 ; load data (RO) from TOS
ADD R6, R6, #1 ; decrement stack pointer

CS 270 - Fall Semester 2015 7

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Pop with Underflow Detection
o If we try to pop too many items off the stack,
an underflow condition occurs.
= Check for underflow before removing data.
= Return status code in R5 (0 for success, 1 for underflow)

POP LD R1, EMPTY ; EMPTY = -x4000
ADD R2, R6, Rl ; Compare stack pointer
BRz FAIL ; with x3FFF
LDR RO, R6, #0
ADD R6, R6, #1
AND R5, R5, #0 ; SUCCESS: R5 = 0

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
ADD R5, R5, #1

EMPTY .FILL xCO000

CS 270 - Fall Semester 2015 8

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Push with Overflow Detection
@ If we try to push too many items onto the stack,
an overflow condition occurs.
= Check for underflow before adding data.
= Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1, MAX ; MAX = -x3FFB
ADD R2, R6, Rl ; Compare stack pointer
BRz FAIL ; with x3FFF

ADD R6, R6, #-1
STR RO, R6, #0
AND R5, R5, #0 ; SUCCESS: R5 = 0

FAIL AND R5, R5, #0 ; FAIL: RS = 1
ADD R5, R5, #1

MAX .FILL xCO005

CS 270 - Fall Semester 2015 9

Copyright & . Inc P or display.

Interrupt-Driven 1/O (Part 2)
@ Interrupts were introduced in Chapter 8.
1. External device signals need to be serviced.
> Processor saves state and starts service routine.

s. When finished, processor restores state and
resumes program.

Interrupt is an unscripted subroutine call,
triggered by an external event.

- Chapter 8 didn’ t explain how (2) and (3) occur,
because it involves a stack.
* Now, we’ re ready...

CS 270 - Fall Semester 2015 10

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Processor State
@ What state is needed to completely capture the
state of a running process?

9 Processor Status Register
= Privilege [15], Priority Level [10:8], Condition Codes [2:0]

15 14 13 12 11 10 9 8 7 6 5 4 0

3 2 1
P PL Injz| P
o Program Counter
= Pointer to next instruction to be executed.

9 Registers
= Temporary process state that’ s not stored in memory.

CS 270 - Fall Semester 2015 "

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Where to Save Processor State?

@ Can’ t use registers.

= Programmer doesn’ t know when interrupt might occur,
so she can’ t prepare by saving critical registers.
=« When resuming, need to restore state exactly as it was.

@ Memory allocated by service routine?

= Must save state before invoking routine,
so we wouldn’ t know where.

= Also, interrupts may be nested — that is, an interrupt
service routine might also get interrupted!
9 Use a stack!
= Location of stack “hard-wired”.
= Push state to save, pop to restore.

CS 270 - Fall Semester 2015 12

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Supervisor Stack

@ A special region of memory used as the stack
for interrupt service routines.

= Initial Supervisor Stack Pointer (SSP) stored in
Saved.SSP.

= Another register for storing User Stack Pointer (USP):
Saved.USP.
@ Want to use R6 as stack pointer.
= So that our PUSH/POP routines still work.
@ When switching from User mode to Supervisor
mode (as result of interrupt), save R6 to
Saved.USP.

CS 270 - Fall Semester 2015 13

Copyright & e P or display.

Invoking the Service Routine (Details)
1. If Priv =1 (user),
Saved.USP = R6, then R6 = Saved.SSP.
Push PSR and PC to Supervisor Stack.
Set PSR[15] = 0 (supervisor mode).
Set PSR[10:8] = priority of interrupt being serviced.
Set PSR[2:0] = 0.
Set MAR = x01vv, where vy = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).
Load memory location (M[x01vv]) into MDR.
8. Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

CS 270 - Fall Semester 2015 14

(S S

N

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Returning from Interrupt

@ Special instruction — RTI — that restores state.
15 14 13 12 11 10 9 8 7 6 5

4 3 2 1 0
RTI 1 000000000000O00O00O
1. Pop PC from supervisor stack:
(PC = M[R6]; R6 = R6 + 1)
2. Pop PSR from supervisor stack:
(PSR = M[R6]; R6 =R6 + 1)
3. If going back to user mode, need to restore User Stack Pointer:
(if PSR[15] = 1, R6 = Saved.USP)

@ RTlis a privileged instruction.
= Can only be executed in Supervisor Mode.

= If executed in User Mode, causes an exception.
(More about that later.)

CS 270 - Fall Semester 2015 15

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Example (1)

Program A

Saved.SSP

[
11
[
1
11

pc x3006 |

x3006| ADD

Executing ADD at location x3006 when Device B interrupts.

CS 270 - Fall Semester 2015 16

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Example (2)

Program A ISR for
Device B
Xx6200+>

111 joé
111 3006/ ADD —

R6—| x3007
PSR for A 6210 RTT
1

PC

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

CS 270 - Fall Semester 2015

Copyright & . Inc P or display.

Example (3)

Program A ISR for
Device B
x62001>

1111171

6202| AND

111171 43006 2DD —

R6—| x3007

PSR for A <6210 RTT
1111
PC| x6203

Executing AND at x6202 when Device C interrupts.

CS 270 - Fall Semester 2015 18

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Example (4)

Program A ISR for
Device B
x62001>
R6—| x6203
6202| AND -~
PSR for B
y | 200 — ISR for
x3007 Device C
RSO 6210 RTT Xx6300 >
111111
PC
x6315[RT L

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

CS 270 - Fall Semester 2015

Copyright © Inc. production or display.

Example (5)

Program A ISR for
Device B
x6200T>
Xx6203
6202| AND —
PSR for B «3006| ADD. — R
R6—| x3007 \ o
Device C
PSR for A <6210 RTT 6300~
111111
PC
6315 RTI
Execute RTI at x6315; pop PC and PSR from stack.
CS 270 - Fall Semester 2015 20

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Example (6)
Program A ISR for
Saved.SSP Device B
X6 >
x6203
6202 AND —~

PSR for B %3006/ ADD — \ ISR for

x3007 = Device C

PSR for A B RTT 6300~

111171

PC| x3007
x6315 RTL
Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.
CS 270 - Fall Semester 2015 21

Copyright & . Inc P or display.

Exception: Internal Interrupt

@ When something unexpected happens
inside the processor, it may cause an exception.
@ Examples:
= Privileged operation (e.g., RTI in user mode)
= Executing an illegal opcode
= Divide by zero
= Accessing an illegal address (e.g., protected system
memory)
@ Handled just like an interrupt
= Vector is determined internally by type of exception
= Priority is the same as running program

CS 270 - Fall Semester 2015 22

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Arithmetic Using a Stack
@ Instead of registers, some ISA's use a stack for
source/destination ops (zero-address machine).

= Example: ADD instruction pops two numbers from the
stack, adds them, and pushes the result to the stack.

Evaluating (A+B)-(C+D) using a stack:

(1) push A

(2) push B =

(3) ADD Wh|_y use a stack?

4) push C * Limited .reglsterls. .

25) :Ush D Convenient calling convention
for subroutines.

(6) ADD « Algorithm naturally expressed

(7) MULTIPLY using FIFO data structure.

(8) pop Result

CS 270 - Fall Semester 2015 23

‘Copyright ©The MoGravHil Companes, Inc. Permiss

Example: OpAdd
@ POP two values, ADD, then PUSH result.

START

d for reproduction or display.

‘ POP ‘ POP ‘
No No
Put back first Put back both ‘ PUSH ‘
RETURN
CS 270 - Fall Semester 2015 24

Copyright© Companies, Inc. Permission req

Example: OpAdd

OpAdd JSR POP

Get first operand.
ADD R5,R5,#0

Check for POP success.

BRp Exit If error, bail.
ADD R1,RO,#0 Make room for second.
JSR POP Get second operand.

ADD R5,R5,#0 Check for POP success.
BRp Restorel If err, restore & bail.
ADD RO,RO,R1 Compute sum.
JSR RangeCheck ; Check size.
BRp Restore2 ; If err, restore & bail.
JSR PUSH ; Push sum onto stack.
RET
Restore2 ADD R6,R6,#-1 ; undo first POP
Restorel ADD R6,R6,#-1 ; undo second POP
Exit RET

e T v o o W wo v,

CS 270 - Fall Semester 2015 25

Copyright & . Inc P or display.

Data Type Conversion

@ Keyboard input routines read ASCII characters,
not binary values, output routines write ASCII.

@ Consider this program:

TRAP x23 ; input from keybd
ADD R1, RO, #0 ; move to Rl

TRAP x23 ; input from keybd
ADD RO, R1, RO ; add two inputs
TRAP x21 ; display result
TRAP x25 ; HALT

@ User inputs 2 and 3 -- what happens?

=« Result displayed: e
= Why? ASCII '2' (x32) + ASCII '3' (x33) = ASCII 'e' (x65)

CS 270 - Fall Semester 2015 26

Copyright ® Companies, Inc. Permission req

ASCII to Binary

@ Useful to deal with mult-digit decimal numbers

@ Assume we've read three ASCII 32 |2
digits (e.g., "259") into memory. 35 |'5'
x39 |'0"

@ How do we convert this to a number we can use?
= Convert first character to digit and multiply by 100.
= Convert second character to digit and multiply by 10.
= Convert third character to digit.
= Add the three digits together.

CS 270 - Fall Semester 2015 27

Copyright © e production or display.

Multiplication via a Lookup Table

@ How can we multiply a number by 100?
= One approach: Add number to itself 100 times.
= Another approach: Add 100 to itself <number> times.
(Better if number < 100.)
o Since we have a small range of numbers (0-9),
use number as an index into a lookup table.
Entry 0: 0x 100 =0
Entry 1: 1x 100 = 100
Entry 2: 2 x 100 = 200
Entry 3: 3 x 100 = 300
etc.

CS 270 - Fall Semester 2015 28

Copyright© Companies, Inc. Permission red P o

Code for Lookup Table
multiply RO by 100, using lookup table

;

" LEA R1, Lookupl00 ; Rl = table base
ADD R1, R1, RO ; add index (RO)
LDR RO, R1, #0 ; load from M[R1])

PRCIRY

Lookupl00 .FILL 0 ; entzy 0
.FILL 100 ; entry 1
.FILL 200 ; entry 2
.FILL 300 ; entry 3
.FILL 400 ; entry 4
.FILL 500 ; entry 5
.FILL 600 ; entry 6
.FILL 700 ; entry 7
.FILL 800 ; entry 8
.FILL 900 ; entry 9

CS 270 - Fall Semester 2015 29

Copyright & . Inc P or display.

Complete Conversion Routine (1 of 3)

; Three-digit buffer at ASCIIBUF.
; Rl tells how many digits to convert.
; Put resulting decimal number in RO.

ASCIItoBinary

AND RO, RO, #0 ; clear result
ADD R1, R1, #0 test # digits
BRz DoneAtoB ; done if no digits

LD R3, NegZero ; R3 = =230

LEA R2, ASCIIBUF

ADD R2, R2, R1

ADD R2, R2, #-1 ; points to ones digit

LDR R4, R2, #0 load digit
ADD R4, R4, R3 convert to number
ADD RO, RO, R4 ; add 1's

CS 270 - Fall Semester 2015 30

-~

-

-

Copyright ® Companies, Inc. Permission req

Conversion Routine (2 of 3)

ADD R1, R1, #-1 one less digit
BRz DoneAtoB done if zerxo
ADD R2, R2, #-1 ; points to tens digit

-

-

LDR R4, R2, #0
ADD R4, R4, R3
LEA R5, LookuplO
ADD R5, R5, R4
LDR R4, R5, #0
ADD RO, RO, R4
ADD R1, R1, #-1
BRz DoneAtoB
ADD R2, R2, #-1

load digit
convert to number
multiply by 10

- -

-

; adds 10’s

one less digit

done if zero

peints to hundreds digit

o v -

-

CS 270 - Fall Semester 2015 31

Copyright © e production or display.

Conversion Routine (3 of 3)

LDR R4, R2, #0 ; load digit
ADD R4, R4, R3 ; convert to number
LEA R5, LookuplO0 ; multiply by 100
ADD R5, R5, R4
LDR R4, R5, #0
ADD RO, RO, R4 ; adds 100's

Done RET

NegZero .FILL xFFDO ; =0x30
ASCIIBUF .BLKW 4
Lookupl0 .FILL O

.FILL 10

Lookupl00 .FILL O
.FILL 100

CS 270 - Fall Semester 2015 32

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Binary to ASCII Conversion

@ Converting a 2's complement binary value to
a three-digit decimal number
= Resulting characters can be output using OUT
@ Instead of multiplying, we need to divide by 100
to get hundreds digit.
= Why wouldn't we use a lookup table for this problem?
= Subtract 100 repeatedly from number to divide.
@ First, check whether number is negative.
= Write sign character (+ or -) to buffer and make
positive.

CS 270 - Fall Semester 2015 33

