

Exponential Growth

- Grows by a factor of $(1+x)$ per year.
- By a factor of $(1+x)^{n}$ for n years.
- Example: An investment of \$1000
- 100% return in one year (i.e. doubles)
- When will it become a million dollars?
- Answer: $2^{y}=1000, \mathrm{y}=$?

The computer industry has experienced exponential growth for decades: memory density, processor performance, circuit density, communications bandwidth, ..

Computer Technology

- Performance improvements:
- Improvements in semiconductor technology
- Reduced feature (circuit) size
- Higher clock speeds
- Improvements in computer architectures
- Enabled by HLL compilers, UNIX
- Lead to RISC architectures
- Together have enabled:
- Lightweight, portable, cheap, fast computers
- Productivity-based programming languages
- Advanced development environments and tools

Single Processor Performance

Defining Computer Architecture

- "Classical" computer architecture:
- Instruction Set Architecture (ISA) design
- i.e. decisions regarding:
- registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, instruction encoding
- "New" computer architecture:
- Specific requirements of the target machine
- Design to maximize performance within constraints: - cost, power, and availability
- Includes ISA, microarchitecture, hardware

Trends in Technology

- Integrated circuit technology
- Transistor density: 35\%/year
- Die size: 10-20\%/year
- Integration overall: 40-55\%/year
- DRAM capacity: 25-40\%/year (slowing)
- Flash capacity: 50-60\%/year
- 15-20X cheaper/bit than DRAM
- Magnetic disk technology: 40\%/year
- 15-25X cheaper/bit then Flash
- 300-500X cheaper/bit than DRAM

Bandwidth and Latency

Bandwidth or throughput

- Total work done in a given time
- 10,000-25,000X improvement for processors
- 300-1200X improvement for memory and disks
- Latency or response time
- Time between start and completion of an event
- 30-80X improvement for processors
- 6-8X improvement for memory and disks

Technology Laws

- Moore's Law: formulated by Gordon Moore of Intel in the early 70's - the number of transistors on a chip doubles every 18 months; corollary, computers become faster and the price of a given level of computing power halves every 18 months.
- Gilder's Law: proposed by George Gilder, prolific author and prophet of the new technology age - the total bandwidth of communication systems triples every twelve months. New developments seem to confirm that bandwidth availability will continue to expand at a rate that supports Gilder's Law.
- But no laws about Software (well, maybe Murphy' s law!)

Power Scaling

- Intel 80386 running at 16 Mhz consumed around 2 Watts, less than a LED light bulb.
- Intel Core i7 running at 3.3 GHz consumes 130 Watts, still less than a television.
- However, heat must be dissipated from $1.5 \times 1.5 \mathrm{~cm}$ chip in a closed case.
- Even with aluminum cooling fins and a power fan, this is close the limit of what can be cooled.
- Furthermore, the power consumption (based on CMOS technology) scales faster than clock speed.
- So instead of increasing clock speed, CPU designers are adding multiple cores

