Processor
COMPUTER Performance and
ARCHITECTURE Para"elism

A Quantitative Approach

Slides by Yashwant Malaiya

Limited content from:
Computer Architecture
A Quantitative Approach
Hennessy, Patterson

Processor Execution time

Clock Cycles = Instruction Count x Cycles per Instruction
CPU Time = Instruction Count x CPIx Clock period

@ The time taken by a program to execute is the product of
= Number of machine instructions executed
= Number of clock cycles per instruction (CPI)
= Single clock period duration
@ Example: 10,000 instructions, CPI=2, clock period = 250
ps
CPU Time =10,000instructions x 2 x 250 ps

=10%x2x250.10712 =510~ O sec.

CS 270 - Fall Semester 2015 2

Processor Execution time
CPU Time = Instruction Count x CPIx Clock Cycle Time

@ Instruction Count for a program
= Determined by program, ISA and compiler
@ Average Cycles per instruction (CPI)
= Determined by CPU hardware
= [f different instructions have different CPI
@ Average CPI affected by instruction mix
@ Clock cycle time (inverse of frequency)
= Logic levels
= technology

CS 270 - Fall Semester 2015 3

Reducing clock cycle time

© Has worked well for 20
decades. ¢
@ Small transistor
dimensions implied smaller :
delays and hence lower ¢
clock cycle time.

@ Not any more.

CS 270 - Fall Semester 2015 4

CPI (cycles per instruction)

@ What is LC-3 cycles per instruction?

@ Instructions take 5-9 cycles (p. 568), assuming
memory access time is one clock period.
= LC-3 CPI may be about 6*. (ideal) Load/store instructions

are about 20-30%

@ No cache, memory access time = 100 cycles?
= LC-3 CPI would be very high.

@ Cache reduces access time to 2 cycles.

= LC-3 CPI higher than 6, but still reasonable.

CS 270 - Fall Semester 2015

Parallelism to save time

@ Do things in parallel to save time.
@ Example: Pipelining
= Divide flow into stages.
= Let instructions flow into the pipeline.
= At a time multiple instructions are under execution.

CS 270 - Fall Semester 2015

Pipelining Analogy
@ Pipelined laundry: overlapping execution
= Parallelism improves performance

order

N 5] » Four loads:
8 85=M__ .
. S0 = time
5 S0=f = 4x2 = 8 hours
e w Pipelined:
= Time in example
= 7x0.5 = 3.5 hours
= Non-stop

=4x0.5 = 2 hours.

CS 270 - Fall Semester
2013

Pipeline Processor Performance

execution 7. 200 400 600 800 1000 1200 1400 1600 1800
order ©
(in instructions)

W St 100(50)W

Iw $2,200(S0) 800 ps Insimcton| Reg| ALY | raed, |n,g

w $3,300(50) S
- - 800 ps
Pipelined (T,= 200ps)
Program

2 4 1 124 14¢
execution o 00 00 600 800 000 00 00

order
(in instructions)

Iw $1,100(80) | "Sjucie"| | Reg| ALY

I $2,200(50) 200 ps |

D
[re] 0 oo

ccoss

Iw $3, 300($0) 200 ps | ™" |n.g Ay | e lang|

200ps 200ps 200ps 200ps 200 ps
CS 270 - Fall Semester
2018

Pipelining: Issues

@ Cannot predict which branch will be taken.
= Actually you may be able to make a good guess.
= Some performance penalty for bad guesses.

@ Instructions may depend on results of previous
instructions.

= There may be a way to get around that problem in
some cases.

CS 270 - Fall Semester 2015 9

Instruction level parallelism (ILP):

@ Pipelining is one example.
@ Multiple issue: have multiple copies of resources
= Multiple instructions start at the same time
= Need careful scheduling
@ Compiler assisted scheduling
o Hardware assisted (“superscaler”): “dynamic scheduling”

= Ex: AMD Opteron x4
= CPI can be less than 1!.

CS 270 - Fall Semestel

Flynn’s taxonomy
@ Michael J. Flynn, 1966

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

= Instruction level parallelism is still SISD

= SSE (Streaming SIMD Extensions): vector
operations

= Intel Xeon €5345: 4 cores

€S 270 - Fall Semester 2015 1

Multi what?

@ Multitasking: tasks share a processor
@ Multithreading: threads share a processor

@ Multiprocessors: using multiple processors

= For example multi-core processors (multiples
processors on the same chip)

= Scheduling of tasks/subtasks needed

@ Thread level parallelism:
= multiple threads on one/more processors

@ Simultaneous multi-threading:
= multiple threads in parallel (using multiple states)

CS 270 - Fall Semester 2015 12

Multi-core processors

@ Power consumption has
become a limiting factor Under-Clocking
el e Joyer GaEr R gt e

consumption for the same

173¢

100 087

performance
= Ex: 20% lower clock £ o

frequency: 87% performance,

51 % pOWer. Over-clodked (+20%) Max Frequency Under-clocked (20%)

@ A processor can switch to
lower frequency to reduce
power.

@ N cores: can run n or more
threads.

CS 270 - Fall Semester 2015 13

Multi-core processors

@ Cores may be identical or specialized
@ Higher level caches are shared.
@ Lower level cache coherency required.

@ Cores may use superscalar or simultaneous
multi-threading architectures.

CS 270 - Fall Semester 2015 14

LC-3
states
Tore*
(RsAisor?
ADD, 5
AND,
Qs NOT, JMP
R TRAP 8
o s LD,LDR, 7
paccwly ST, STR
To1d’ P
‘\UAR(.T,M/ \\VMA/ DR LD|, STI 9
C ‘EJH«MMA{}/E BR 5,6
i JSR 6

