
1

Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall Semester 2015

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall Semester 2015

Combinational vs. Sequential
Combinational Circuit
n  does not store information, always gives the same

output for a given set of inputs
 example: adder always generates sum and carry,
regardless of previous inputs

Sequential Circuit
n  stores information, output depends on stored info

(state) plus input
n  so a given input might produce different outputs,

depending on the stored information
n  useful for building “memory” elements and “state

machines”
 example: ticket counter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall Semester 2015

R-S Latch: Simple Storage Element
R is used to “reset” or “clear” the element – set it
to zero.
S is used to “set” the element – set it to one.

If both R and S are one, output could be either
zero or one.
n  “quiescent” state -- holds its previous value
n  if a is 1, b is 0, and vice versa

1

0

1

1

1

1

0

0

1

1

0

0

1

1

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall Semester 2015

Clearing the R-S latch

Suppose we start with output = 1, then change R
to zero.

Output changes to zero.

Then set R=1 to “store” value in quiescent state.

1

0

1

1

1

1

0

0

1

0

1

0

0

0

1

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall Semester 2015

Setting the R-S Latch

Suppose we start with output = 0, then change S
to zero.

Output changes to one.

Then set S=1 to “store” value in quiescent state.

1

1

0

0

1

1 0

1

1

1

0

0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall Semester 2015

R-S Latch Summary

R = S = 1
n  hold current value in latch

S = 0, R=1
n  set value to 1

R = 0, S = 1
n  set value to 0

R = S = 0
n  both outputs equal one
n  final state determined by electrical properties of gates
n  Don’t do it!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall Semester 2015

Gated D-Latch
Two inputs: D (data) and WE (write enable)
n  when WE = 1, latch is set to value of D

S = NOT(D), R = D
n  when WE = 0, latch holds previous value

S = R = 1

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall Semester 2015

Register
A register stores a multi-bit value.
n  We use a collection of D-latches, all controlled by a

common WE.
n  When WE=1, n-bit value D is written to register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall Semester 2015

Representing Multi-bit Values
Number bits from right (0) to left (n-1)
n  just a convention -- could be left to right, but must be

consistent
Use brackets to denote range:
D[l:r] denotes bit l to bit r, from left to right

May also see A<14:9>,
especially in hardware block diagrams.

A = 0101001101010101

A[2:0] = 101 A[14:9] = 101001

0 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall Semester 2015

Memory
Now that we know how to store bits,
we can build a memory – a logical k × m array of
stored bits.

• • •

k = 2n

locations

m bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall Semester 2015

22 x 3 Memory

address
decoder

word select word WE
address

write
enable

input bits

output bits

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall Semester 2015

More Memory Details
Not the way actual memory is implemented!
n  fewer transistors, denser, relies on electrical properties

But the logical structure is very similar.
n  address decoder, word select line, word write enable

Random Access Memory: 2 different types
n  Static RAM (SRAM)

 fast, used for caches, maintains data when powered
n  Dynamic RAM (DRAM)

 slower but denser, storage decays, must be refreshed
Non-Volatile Memory: ROM, PROM, Flash

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall Semester 2015

Memory Bandwidth
Bandwidth is the rate at which memory can be
read or written by the processor.
Approximately equal to the memory bus size
times the speed at which the memory is clocked.
Examples of bandwidth (from Wikipedia):
n  Phone line, Modem, up to 5.6KB/s
n  Digital subscriber line, ADSL, up to 128KB/s
n  Wireless networking, 802.11g, up to 17.5MB/s
n  Peripheral connection, USB 2.0, 60MB/s
n  Digital video, HDMI, up to 1.275GB/s
n  Computer bus, PCI Express, up to 25.6GB/s
n  Memory chips, SDRAM, up to 52GB/s

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall Semester 2015

Looking Ahead: C Arrays

Similar to Java arrays

 // integer array
 int iArray[3] = {1,2,3};
 printf("iArray[2]: %d", iArray[2]);

 // float array
 float fArray[2] = {0.1f,0.2f};
 printf("fArray[1]: %f", fArray[1]);

 // character array
 char cArray[4] = {'a','b','c','d'};
 printf("cArray[3]: %c", cArray[3]);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall Semester 2015

Looking Ahead: C Strings

Array of chars with null (not NULL) termination

 // string: static allocation
 char *string1 = "Hello World\n";
 printf("string1: %s", string1);

 // string: dynamic allocation
 char *string2 = malloc(13);
 strcpy(string2, "Hello World\n");
 Note that the programmer is responsible for

making sure string has enough memory!

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall Semester 2015

Looking Ahead: C Arrays and C Pointers

Array name is a pointer to array

 int iArray[2] = {1234, 5678};

 printf("iArray[0]: %d", iArray[0]);
 printf("iArray[1]: %d", iArray[1]);
 printf("&iArray[0]: %x", &iArray[0]);
 printf("&iArray[1]: %x", &iArray[1]);
 printf("iArray: %x", iArray);
 iArray[2] = 0; // out of bounds!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall Semester 2015

Looking Ahead: C Functions

Can pass by value or reference

 // by value (copies value)
 float f1(int i, float f);
 // by reference (copies pointer)
 float f2(float *f);

Function cannot change values passed by value

 f1: i = 10; // changes the copy
Function can change values passed by reference

 f2: *f = 1.2; // changes actual value

