
1

Midterm Exam
Review Slides

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall Semester 2015

Review Topics
Number Representation
Computer Arithmetic
Transistors and Gates
Combinational Logic
Sequential Circuits
Finite State Machines
C Programming
gdb Debugging
LC-3 Architecture

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall Semester 2015

Number Representation
What can a binary number mean?
Interpretations of a 32-bit memory location:
n  32-bit floating point (IEEE)
n  32-bit unsigned/signed integer
n  16-bit unsigned/signed integer (2)
n  8-bit unsigned/signed bytes (4)
n  ASCII characters (4)
n  RISC instruction
n  Control or status register
n  .jpg. .mpg, .mp3., .avi, …

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall Semester 2015

Number Representation
Hexadecimal to Binary Conversion

•  Method: Convert hexadecimal
digits to binary using table.

•  Question: What is hexadecimal
0xFEBD4570 in binary?

F E B D 4 5 7 0
1111 1110 1011 1101 0100 0101 0111 0000

•  Answer:
 11111110101111010100010101110000

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall Semester 2015

Number Representation
Binary to Hexadecimal Conversion

•  Method: Group binary digits,
convert to hex digits using table.

•  Question: What is binary
11001101111011110001001000110000 in
hexadecimal?

1100 1101 1110 1111 0001 0010 0011 0000
C D E F 1 2 3 0

•  Answer: 0xCDEF1230

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall Semester 2015

Number Representation
Decimal to Binary Conversion

•  Method: Convert decimal to binary
with divide by 2, check odd/even.

•  Question: What is decimal 49 in
binary?

49 is odd, prepend a ‘1’ 1
49 / 2 = 24 is even, prepend a ‘0’ 01
24 / 2 = 12 is even, prepend a ‘0’ 001
12 / 2 = 6 is even, prepend a ‘0’ 0001
6 / 2 = 3 is odd, prepend a ‘1’ 10001
3 / 2 = 1 is odd, prepend a ‘1’ 110001

Answer: 110001

2n Decimal
20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall Semester 2015

Number Representation
Binary to Decimal Conversion

•  Method: Convert binary to decimal
by multiplying by 2, add 1 if bit set.

•  Question: What is binary 110101 in
decimal?

Start with 0 0
Left bit set, multiply by 2, add 1 1
Left bit set, multiply by 2, add 1 3
Left bit clear, multiply by 2 6
Left bit set, multiply by 2, add 1 13
Left bit clear, multiply by 2 26
Left bit set, multiply by 2, add 1 53

Answer: 53

2n Decimal
20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall Semester 2015

Number Representation
Binary to Floating Point Conversion

•  Single-precision IEEE floating point number:
 1 01111111 10000000000000000000000

n  Sign is 1 – number is negative.
n  Exponent field is 01111111 = 127 – 127 = 0 (decimal).
n  Fraction is 1.100000000000… = 1.5 (decimal).

•  Value = -1.5 x 2(127-127) = -1.5 x 20 = -1.5

sign exponent fraction

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall Semester 2015

Number Representation
Floating Point to Binary Conversion

•  Value = 6.125
n  Number is positive – sign is 0
n  Fraction is 110.001 (binary), normalize to 1.10001 * 22

n  Exponent is 2 + 127 = 129 (decimal) = 10000001

•  Single-precision IEEE floating point number:
 0 10000001 10001000000000000000000

sign exponent fraction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Number Representation
Hexadecimal to ASCII Conversion

Char ASCII
Code

Char ASCII
Code

'A' 0x41 '0' 0x30
'B' 0x42 '1' 0x31
'C' 0x43 '2' 0x32
'D' 0x44 '3' 0x33
'E' 0x45 '4' 0x34
'F' 0x46 '5' 0x35
'G' 0x47 '6' 0x36

•  Method: Convert values
to ASCII by table lookup.

•  Each two (hex) digits is a
single character.

•  Question: What is hex
0x42454144 in ASCII?

0x42 = 'B'
0x45 = 'E'
0x41 = 'A'
0x44 = 'D'

•  Answer: “BEAD”
10 CS270 - Fall Semester 2015

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall Semester 2015

Computer Arithmetic
Signed Integer Representations

Binary
Number

Signed
Magnitude

1’s
Complement

2’s
Complement

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Arithmetic
2’s Complement Arithmetic

•  Binary Arithmetic
(unsigned integers):

 1 0 0 1 0 0 1 0
+ 0 0 1 1 0 1 0 1
0 1 1 0 0 0 1 1 1
•  Hex Equivalent:
0x92 + 0x35 = 0xC7
•  Decimal Equivalent:
146 + 53 = 199

•  Binary Arithmetic
(signed integers):

 1 0 0 1 0 0 1 0
+ 0 0 1 1 0 1 0 1
0 1 1 0 0 0 1 1 1
•  Hex Equivalent:
0x92 + 0x35 = 0xC7
•  Decimal Equivalent:
-110 + 53 = -57

12 CS270 - Fall Semester 2015

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall Semester 2015

Computer Arithmetic
Bitwise Logical Operations

•  Bitwise AND (&):
 1 1 1 1 0 0 0 0
& 0 0 1 1 0 1 0 1
 0 0 1 1 0 0 0 0
•  Hex Equivalent:
0xF0 & 035 = 0xC0

•  Bitwise OR (|):
 1 1 1 1 0 0 0 0
| 0 0 1 1 0 1 0 1
 1 1 1 1 0 1 0 1
•  Hex Equivalent:
0xF0 | 035 = 0xF5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall Semester 2015

Transistors and Gates
Transistor Basics (p-type and n-type)
Gate voltage determines current flow between
source and drain.
n  P-type: 0V closes circuit, 2.9V opens circuit.
n  N-type: 2.9V closes circuit, 0V opens circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall Semester 2015

Transistors and Gates
Transistor Basics (p-type and n-type)
Transistors are switches which have a
propagation delay, waveform is not ideal, and
voltage transition is not instantaneous!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall Semester 2015

Transistors and Gates
NOT Gate

A T1 T2 B
0 Closed Open 1
1 Open Closed 0

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall Semester 2015

Transistors and Gates
NOR Gate

A B T1 T2 T3 T4 C
0 0 Closed Closed Open Open 1
0 1 Closed Open Open Closed 0
1 0 Open Closed Closed Open 0
1 1 Open Open Closed Closed 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall Semester 2015

Transistors and Gates
NAND Gate

A B T1 T2 T3 T4 C
0 0 Open Open Closed Closed 1
0 1 Open Closed Closed Open 1
1 0 Closed Open Open Closed 1
1 1 Closed Closed Open Open 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall Semester 2015

Transistors and Gates
De Morgan’s Law

Converting AND to OR (with some help from NOT)
Consider the following gate:

A B
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

BA ⋅BA BA ⋅

Same as A OR B!

To convert AND to OR
(or vice versa),

invert inputs and output.

NOT(NOT(A) AND NOT(B)) = A OR B
NOT(NOT(A) OR NOT(B)) = A AND B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall Semester 2015

Transistors and Gates
Logical Completeness

1.  AND/OR/NOT are logically complete, if you have
enough gates you can build any truth table.

2.  NAND/NOR are logically complete, same as
above, so only these gates are sufficient!

•  Proof 1: Programmable logic array proves that
any truth table can be built from AND/OR/NOT.

•  Proof 2: Can synthesize AND/OR/NOT from
NAND/NOR, though it may take more gates.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall Semester 2015

Combinational Logic
Combinational Circuit to Truth Table

A B C V W X Y Z
0 0 0 1 0 0 0 1
0 0 1 0 0 1 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 0 1 1
1 0 0 0 0 0 1 1
1 0 1 0 0 1 1 1
1 1 0 0 1 1 0 0
1 1 1 0 1 0 0 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall Semester 2015

Combinational Logic
Truth Table to Combinational Circuit

A B C X Y
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 1
1 0 1 0 1
1 1 0 0 0
1 1 1 0 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall Semester 2015

Combinational Logic
Decoder Circuit

n inputs, 2n outputs
n  exactly one output is 1 for each input pattern

A B O00 O01 O10 O11
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall Semester 2015

Combinational Logic
Multiplexer Circuit

n-bit selector and 2n inputs, one output
n  output equals one of the inputs, depending on

selector

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall Semester 2015

Combinational Logic
Full Adder Circuit

Add two bits and carry-in,
produce one-bit sum and carry-out.

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall Semester 2015

Sequential Circuits
Difference from Combinational

Sequential circuits differ from combinational
circuits because they have persistent state.
n  For a combinational circuit, the outputs depend only

on the inputs.
n  For a sequential circuit, the outputs depend on the

inputs and the state.
n  Sequential circuits can be used to implement a finite

state machine.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall Semester 2015

Sequential Circuits
S-R Latch Circuit

Suppose we start with output = 0, then change S
to zero (Set), latch state will change to 1.
Or we start with output = 1, then change R to
zero (Reset), latch state will change to 0.
Setting S or R back to 1 makes latch quiescent,
never do S = R = 0!

Output changes to one.
1

1

0

0

1

1

0

1

1

1

0

0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall Semester 2015

Sequential Circuits
D-Latch Circuit

Two inputs: D (data) and WE (write enable)
n  when WE = 1, latch is set to value of D

S = NOT(D), R = D
n  when WE = 0, latch holds previous value

S = R = 1

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Fall Semester 2015

Sequential Circuits
D-Latch Truth Table

WE D Previous Q New Q
0 x 0 0
0 x 1 1
1 0 x 0
1 1 x 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Fall Semester 2015

Sequential Circuits
Exhaustive Testing

How many test cases for combinational logic?
n  2n, where n is the number of input bits
n  Example: 4-bit decoder requires 16 test cases

How many test cases for sequential logic?
n  2n * 2m, where m is number of states
n  Example: 1-bit D-latch requires 8 test cases

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Fall Semester 2015

Sequential Circuits - Memory Architecture

address
decoder

word select word WE
address

write
enable

input bits

output bits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS270 - Fall Semester 2015

Sequential Circuits
Memory Address Space and Width

Now that we know how to store bits,
we can build a memory – a logical k × m array of
stored bits.

• • •

k = 2n

locations

m bits

Address Space:
number of locations
(usually a power of 2)

Address Width (Addressability):
number of bits per location
(e.g., byte-addressable)

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finite State Machines
Finding States from Inputs

•  Just follow the arrows,
for example:

•  Starting state is ‘A’
•  Inputs given:
 64, 13, 29, 47
•  States visited:
 C, D, C, E
•  State outputs:
 2, 3, 2, 4

33 CS270 - Fall Semester 2015

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finite State Machines
Finding Inputs from States

•  Just follow the arrows,
for example:

•  Starting state is ‘C’
•  States visited:
 E, A, B, A, C
•  Inputs given:
 47, 33, 27, 99, 64
•  Not all paths are

possible!

34 CS270 - Fall Semester 2015

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35 CS270 - Fall Semester 2015

C Programming
Bit Manipulation

C code to read or write a bit:
int readBit(int value, int bit) {

 return (value >> bit) & 01;
 // return !!(value >> bit);

}

void writeBit(int *value, int bit) {

 *value |= 1<<bit;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36 CS270 - Fall Semester 2015

C Programming
Control Structures

C conditional and iterative statements
n  if statement

 if (value == 0x12345678)
 printf("value matches 0x12345678\n");

n  for loop
 for (int i = 0; i < 8; ++i)
 printf("i = %d\n", i);

n  while loop
 int j = 6;
 while (j--)
 printf("j = %d\n", j);

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37 CS270 - Fall Semester 2015

C Programming
Pointers and Arrays

C pointers and arrays
void foo(int *pointer)
{
 *(pointer+0) = pointer[2] = 0x1234;
 *(pointer+1) = pointer[3] = 0x5678;
}
int main(int argc, char *argv[])
{
 int array[]= {0, 1, 2, 3};

 foo(array);
 for (int i = 0; i <= 3; ++i)

 printf("array[%d] = %x\n", i, array[i]);
 }

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

38 CS270 - Fall Semester 2015

gdb Debugger
Basic Commands

•  How to debug a program using gdb:
$ gdb a.out // debug a program
(gdb) break main // set breakpoint on function
(gdb) break 23 // set breakpoint in file
(gdb) run // run program
(gdb) list 20 // list current file
(gdb) step // single step
(gdb) print v // display value of variable
(gdb) print *p // deference pointer and display
(gdb) quit // quit debugger

•  Commands can be single letters (b, r, l, s, p, q)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

39 CS270 - Fall Semester 2015

Programming Basics
Programming Constructs

Task

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
condition

Subtask

Test
condition

Sequential Conditional Iterative

True

True

False
False

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

40 CS270 - Fall Semester 2015

LC-3
Architecture
System
Architecture

Combinational
Logic

State Machine

Storage

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

41 CS270 - Fall Semester 2015

LC-3 Architecture
Instruction Set (First Half)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

42 CS270 - Fall Semester 2015

LC-3 Architecture
Instruction Set (Second Half)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

43 CS270 - Fall Semester 2015

LC-3 Architecture
Addressing Modes

Load -- read data from memory to register
n  LD: PC-relative mode
n  LDR: base+offset mode
n  LDI: indirect mode

Store -- write data from register to memory
n  ST: PC-relative mode
n  STR: base+offset mode
n  STI: indirect mode

Load pointer: compute address, save in register
n  LEA: immediate mode
n  does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

44 CS270 - Fall Semester 2015

LC-3 Architecture
Machine Code to Assembly

•  What is the assembly code for machine
instruction 0101010010111101?

•  Step 1) Identify opcode: 0101 = AND
•  Step 2) Parse entire instruction (use reference)
•  Step 3) Get values from each field

 OPCODE DR SR 1 imm5
 15:12 11:9 8:6 5 4:0
 0101 010 010 1 11101
 AND R2 R2 -3

•  Step 4) Translate to mnemonics: AND R2,R2,#-3

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

•  What is the machine code for assembly
instruction NOT R7,R6?

•  Step 1) Identify opcode: NOT = 1001
•  Step 2) Put values into each field:

 NOT R7 R6

 OPCODE DR SR 111111
 15:12 11:9 8:6 5:0
 1001 111 110 111111

•  Step 3) Build machine instruction: 1001111110111111

45 CS270 - Fall Semester 2015

LC-3 Architecture
Assembly to Machine Code

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

46 CS270 - Fall Semester 2015

LC-3 Architecture
Assembly Code Syntax

 .ORIG x3000
MAIN AND R0,R0,#0 ; Initialize Sum
 JSR COMPUTE ; Call function
 ST R0, SUM ; Store Sum
 HALT ; Program complete
COMPUTE LD R1,OPERAND1 ; Load Operand1
 LD R2,OPERAND2 ; Load Operand2
 ADD R0,R1,R2 ; Compute Sum
 RET ; Function return
;; Input data set
OPERAND1 .FILL x1234 ; Operand1
OPERAND2 .FILL x4321 ; Operand2
SUM .BLKW 1 ; Sum
 .END

