

Number Representation What can a binary number mean?

• Interpretations of a 32-bit memory location:

- 32-bit floating point (IEEE)
- 32-bit unsigned/signed integer
- 16-bit unsigned/signed integer (2)
- 8-bit unsigned/signed bytes (4)
- ASCII characters (4)
- RISC instruction
- Control or status register
- . .jpg. .mpg, .mp3., .avi, ...

CS270 - Fall Semester 2015

Number Representation Hexadecimal to Binary Conversion

opyright @ The McGraw-Hill Companies, Inc. Permission required for reprode

· Method: Convert hexadecimal 0000 0001 digits to binary using table. 0010 0011 Question: What is hexadecimal 0100 0xFEBD4570 in binary? 0101 0110 F E B D 4 5 7 0 0111 1111 1110 1011 1101 0100 0101 0111 0000 1000 • Answer: 1001 1010 111111101011110101000101011110000 1011 1100 1101 1110 Е 1111 F CS270 - Fall Semester 2015

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.							
Number Representation							
Binary to Hexadecimal Co	Binary to Hexadecimal Conversion						
*	Hexadecimal	Binary					
Mothod: Croup bipany digita	0	0000					
• Method. Group binary digits,	1	0001					
convert to hex digits using table.	2	0010					
Question: What is bipary	3	0011					
· Question. What is binary	4	0100					
11001101111011110001001000110000 in 5 0101							
hexadecimal?	6	0110					
	7	0111					
1100 1101 1110 1111 0001 0010 0011 0000	8	1000					
C D E F 1 2 3 0	9	1001					
• Answer: 0xcDEE1230	Α	1010					
Allower. 0xcDEF1250	в	1011					
	С	1100					
	D	1101					
	E	1110					
CS270 - Fall Semester 2015	F	1111					

Number Representation **Decimal to Binary Conversion**

	2 ⁿ	Decimal
 Method: Convert decimal to binary 	2 ⁰	1
with divide by 2, check odd/even.	2 ¹	2
 Question: What is decimal 49 in 	2 ²	4
binary?	2 ³	8
49 is odd, prepend a ⁴ 1 ² 1	2 ⁴	16
49 / 2 = 24 is even, prepend a '0' 01	2 ⁵	32
24 / 2 = 12 is even, prepend a '0' 001	2 ⁶	64
12 / 2 = 6 is even, prepend a '0' 0001	27	128
6 / 2 = 3 is odd, prepend a '1' 10001	2 ⁸	256
3 / 2 = 1 is odd, prepend a '1' 110001	2 ⁹	512
Answer: 110001	2 ¹⁰	1024
CS270 - Fall Semester 2015		6

Number Representation **Binary to Decimal Conversion** 2ⁿ Decimal · Method: Convert binary to decimal **2**⁰ 1 by multiplying by 2, add 1 if bit set. **2**¹ 2 • Question: What is binary 110101 in 2² 4 decimal? **2**³ 8 Start with 0 0 2⁴ 16 Left bit set, multiply by 2, add 1 1 **2**⁵ 32 Left bit set, multiply by 2, add 1 3 **2**⁶ 64 Left bit clear, multiply by 2 6 27 128 Left bit set, multiply by 2, add 1 13 2⁸ 256 Left bit clear, multiply by 2 26 2⁹ 512

CS270 - Fall Semester 2015

53

2¹⁰

1024

Left bit set, multiply by 2, add 1

Answer: 53

Number Representation Hexadecimal to ASCII Conversion

 Method: Convert values 							
to ASCII by table lookup.	Char	ASCII Code	Char	ASCII Code			
 Each two (hex) digits is a 	'A'	0x41	'0'	0x30			
single character.	'B'	0x42	'1'	0x31			
Question: What is have	'C'	0x43	'2'	0x32			
	'D'	0x44	'3'	0x33			
0x42454144 In ASCII?	'E'	0x45	'4'	0x34			
0x42 = 'B'	'5'	0x35					
0x45 = 'E' 'G' 0x47 '6'							
0x41 = 'A'							
0x44 = 'D'							
Answer: "BEAD"							
CS270 - Fall Serr	nester 2015			10			

Сору	right © The McGraw-Hill Comp	anies, Inc. Permission required for	reproduction or display.			
Computer Arithmetic						
Signed	I Integ	er Repre	sentatio	ns		
Binary Number	Signed Magnitude	1's Complement	2's Complement			
0000	0	0	0			
0001	1	1	1			
0010	2	2	2			
0011	3	3	3			
0100	4	4	4			
0101	5	5	5			
0110	6	6	6			
0111	7	7	7			
1000	-0	-7	-8			
1001	-1	-6	-7			
1010	-2	-5	-6			
1011	-3	-4	-5			
1100	-4	-3	-4			
1101	-5	-2	-3			
1110	-6	-1	-2			
1111	-7	-0	-1			
	CS27	0 - Fall Semester 2015				

Computer Arithmetic 2's Complement Arithmetic						
 Binary Arithmetic (unsigned integers): 	 Binary Arithmetic (signed integers): 					
10010010	10010010					
+ 0 0 1 1 0 1 0 1	+ 0 0 1 1 0 1 0 1					
011000111	011000111					
Hex Equivalent: Hex Equivalent:						
0x92 + 0x35 = 0xC7 0x92 + 0x35 = 0xC7						
 Decimal Equivalent: 	Decimal Equivalent:					
146 + 53 = 199 -110 + 53 = -57						
CS270 - Fall	Semester 2015 12					

 Bitwise AND (&): Bitwise OR (): Bitwise OR (): 	Computer Computer Bitwise Logic	Arithmetic al Operations
	 Bitwise AND (&): 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 <l< th=""><th> Bitwise OR (): 1 1 1 1 0 0 0 1 <li< th=""></li<></th></l<>	 Bitwise OR (): 1 1 1 1 0 0 0 1 <li< th=""></li<>

<text><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

CS270 - Fall Semester 2015

26

D	Sequent -Latch	ial Circu Truth Ta	uits able				
WE	D	Previous Q	New Q				
0	x	0	0				
0	x	1	1				
1 0 x 0							
1 1 x 1							

Copyright © The McGrave-Hill Comparises. Inc. Permission required for reproduction of display.								
In	Instruction Set (First Half)							
ADD^+	0001	DR	SR1 0	00 SR2				
ADD^+	0001	DR	SR1 1	imm5				
AND ⁺	0101	DR	SR1 0	00 SR2				
AND ⁺	0101	DR	SR1 1	imm5				
BR	0000	n z p	F	Coffset9				
JMP	1100	000	BaseR	000000				
JSR	0100	1	PCoff	set11				
JSRR	0100	0 00	BaseR	000000				
LD^+	0010	DR	F	Coffset9				
CS270 - Fall Semester 2015								

Ci	opyright © The McGraw-Hill Ci	ompanies, Inc. Per	mission required for re	production or display.	
	LC-3	Arch	nitect	ure	
Instr		Set		ond Hal	f)
LDI ⁺	1010	DR		Coffset9	
LDR^{+}	0110	DR	BaseR	offset6	
LEA ⁺	1110	DR	F	Coffset9	
NOT ⁺	1001	DR	SR	111111	
RET	1100	000	111	000000	
RTI	1000		00000000	0000	
ST	0011	SR	F	PCoffset9	
STI	1011	SR	F	Coffset9	
STR	0111	SR	BaseR	offset6	
TRAP	1111	0000		trapvect8	
	CS	270 - Fall Se	mester 2015		42

LC-3 Architecture Addressing Modes

- Load -- read data from memory to register
 - LD: PC-relative mode

Copyright © The McGr

- LDR: base+offset mode
- LDI; indirect mode
- Store -- write data from register to memory
 - ST: PC-relative mode
 - STR: base+offset mode
 - STI: indirect mode
- Load pointer: compute address, save in register

43

- LEA: immediate mode
- does not access memory
 CS270 Fall Semester 2015

Coyote 1 The McGare HE Companies, Nr. Permission required for reportantion or depily. LC-3 Architecture Machine Code to Assembly

- What is the assembly code for machine instruction **01010010111101**?
- Step 1) Identify opcode: **0101** = AND
- Step 2) Parse entire instruction (use reference)
- · Step 3) Get values from each field

imm5	1	SR	DR	OPCODE
4:0	5	8:6	11:9	15:12
11101	1	010	010	0101
-3		R2	R2	AND

Step 4) Translate to mnemonics: AND R2,R2,#-3

 CS270 - Fall Semester 2015
 44

Copyright © The McGrae-H4 Companies, Inc. Permission required for reproduction or display.							
	Assembly Code Syntax						
MAIN	.ORIG AND JSR CO ST	x3000 R0,R0,#0 MPUTE R0, SUM	; Initialize Sum ; Call function ; Store Sum				
COMPUTE	HALT LD LD ADD RET	R1,OPERAND1 R2,OPERAND2 R0,R1,R2	<pre>; Program complete ; Load Operand1 ; Load Operand2 ; Compute Sum ; Function return</pre>				
;; Input OPERAND1 OPERAND2 SUM	data s .FILL .FILL .BLKW .END	et x1234 x4321 1	; Operandl ; Operand2 ; Sum				
CS270 - Fall Semester 2015							