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Transistor: Digital Building Blocks

Logically, each transistor acts as a switch

Combined to implement logic functions (gates)

◼ AND, OR, NOT

Combined to build higher-level structures

◼ Multiplexer, decoder, register, memory …

◼ Adder, multiplier … 

Combined to build simple processor

◼ LC-3
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Basic Logic Gates
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Propagation Delay

Each gate has a propagation delay, typically 

fraction of a nanosecond (10-9 sec).

Delays accumulate depending on the chain of 

gates the signals have to go through.

Clock frequency of a processor is determined by 

the delay of the longest combinational path 

between storage elements, i.e. cycle time.
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Boolean Algebra
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Remember Identify, Domination, 

Negation Laws from Logic!
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DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

A B

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

BA BA BA 

Same as A OR B!

To convert AND to OR 

(or vice versa),

invert inputs and output.
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Combinational Logic

Cascading set of logic gates

What is the truth table?
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Truth Table (from circuit)

Truth table for circuit on previous slide 

A B C W X Y Z

0 0 0 0 0 0 1

0 0 1 0 1 1 1

0 1 0 0 1 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 0 0
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Decoder
n inputs, 2n outputs

◼ exactly one output is 1 for each possible input pattern

2-bit

decoder
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Multiplexer (MUX)

n-bit selector and 2n inputs, one output

◼ output equals one of the inputs, depending on 

selector

4-to-1 MUX
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Full Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Four-bit Adder
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Programmable Logic Array

Front end reacts to 

specific inputs

Back end defines the 

outputs

Any truth table can 

be built

Not necessarily 

minimal circuit!

Requires (at least) ten gates.
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Combinational vs. Sequential

Combinational Circuit

◼ always gives the same output for a given set of inputs

ex: adder always generates sum and carry,

regardless of previous inputs

Sequential Circuit

◼ stores information

◼ output depends on stored information (state) plus 

input

so a given input might produce different outputs,

depending on the stored information

◼ example: ticket counter

advances when you push the button

output depends on previous state
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R-S Latch: Simple Storage Element
R is used to “reset” or “clear” the element – set it to zero.

S is used to “set” the element – set it to one.

If both R and S are one, out could be either zero 

or one.

◼ “quiescent” state -- holds its previous value

◼ note: if a is 1, b is 0, and vice versa
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R-S Latch Summary

R = S = 1

◼ hold current value in latch

S = 0, R=1

◼ set value to 1

R = 0, S = 1

◼ set value to 0

R = S = 0

◼ both outputs equal one

◼ final state determined by electrical properties of gates

◼ Don’t do it!
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Gated D-Latch

Two inputs: D (data) and WE (write enable)

◼ when WE = 1, latch is set to value of D

S = NOT(D), R = D

◼ when WE = 0, latch holds previous value

S = R = 1
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22 x 3 Memory

address

decoder

word select word WE
address

write

enable

input bits

output bits
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Finite State Machines
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State Machine

A general sequential circuit

◼ Combines combinational logic with storage

◼ “Remembers” state, and changes output (and state) 

based on inputs and current state

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

Mealy type: general

Moore type: Output depends 

only on state
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State Diagram

Shows states and 

actions that cause a transition between states.
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Finite State Machine
A description of a system with the following 

components:

1. A finite number of states

2. A finite number of external inputs

3. A finite number of external outputs

4. An explicit specification of all state transitions

5. An explicit specification of what determines each

external output value

Often described by a state diagram.

◼ Inputs trigger state transitions.
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The Clock

Frequently, a clock circuit triggers transition from

one state to the next.

At the beginning of each clock cycle,

state machine makes a transition,

based on the current state and the external 

inputs.

“1”

“0”

time→One

Cycle
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Storage: Master-Slave Flipflop

A pair of gated D-latches, 

to isolate next state from current state.

During 1st phase (clock=1),

previously-computed state

becomes current state and is

sent to the logic circuit.

During 2nd phase (clock=0),

next state, computed by

logic circuit, is stored in

Latch A.



Memory Hierarchy
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Review:  Major Components of a Computer
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Review:  Major Components of a Computer
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Level Access 

time

Size Cost/GB

Registers 0.25 ns 48+

64,128, 

32b

-

Cache 

L1,L2,L3

0.5 ns 5MB 125

Memory 1000 ns 8GB 4.0

SSD 100K ns 0.25

Disk 1000K ns 1 TB 0.02
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The Memory Hierarchy: Key facts 

and ideas (1)

• Programs keep getting bigger exponentially.

• Memory cost /bit

• Faster technologies are expensive, slower are 

cheaper. Different by orders of magnitude

• With time storage density goes up driving per bit cost 

down.

• Locality in program execution

• Code/data used recently will likely be needed soon.

• Code/data that is near the one recently used, will 

likely be needed soon.
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A Typical Memory Hierarchy

Second

Level
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Speed (%cycles): ½’s             1’s                  10’s                  100’s               10,000’s

Size (bytes):    100’s   10K’s                 M’s                    G’s                    T’s

Cost:         highest                                                                               lowest

❑ Take advantage of the principle of locality to present the user with as 

much memory as is available in the cheapest technology at the 

speed offered by the fastest technology
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Principle of Locality

Programs access a small proportion of their 

address space at any time

Temporal locality

◼ Items accessed recently are likely to be accessed 

again soon

◼ e.g., instructions in a loop, induction variables

Spatial locality

◼ Items near those accessed recently are likely to be 

accessed soon

◼ E.g., sequential instruction access, array data
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Cache Misses

On cache hit, CPU proceeds normally

On cache miss

◼ Stall the CPU pipeline

◼ Fetch block from next level of hierarchy

◼ Instruction cache miss

Restart instruction fetch

◼ Data cache miss

Complete data access
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Multilevel Caches

Primary cache attached to CPU

◼ Small, but fast

Level-2 cache services misses from primary 

cache

◼ Larger, slower, but still faster than main memory

Main memory services L-2 cache misses

Some systems now include L-3 cache
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Virtual Memory

Use main memory as a “cache” for secondary 
(disk) storage
◼ Managed jointly by CPU hardware and the operating 

system (OS)

Programs share main memory
◼ Each gets a private virtual address space holding its 

frequently used code and data

◼ Protected from other programs

CPU and OS translate virtual addresses to 
physical addresses
◼ VM “block” is called a page

◼ VM translation “miss” is called a page fault
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Virtual vs. Physical Address

Processor assumes a certain memory 
addressing scheme:
◼ A block of data is called a virtual page

◼ An address is called virtual (or logical) address

Main memory may have a different addressing 
scheme:
◼ Real memory address is called a physical address, 

MMU translates virtual address to physical address

◼ Complete address translation table is large and must 
therefore reside in main memory

◼ MMU contains TLB (translation lookaside buffer), 
which is a small cache of the address translation table
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Logical View of Segmentation
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Segmentation Hardware
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Paging

Physical  address space of a process can 

be noncontiguous; process is allocated 

physical memory whenever the latter is 

available

◼ Avoids external fragmentation

◼ Avoids problem of varying sized memory 

chunks

Divide physical memory into fixed-sized 

blocks called frames

◼ Size is power of 2, between 512 bytes and 16 

Mbytes

Divide logical memory into blocks of same 

size called pages

Keep track of all free frames
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Paging Hardware
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Page Fault Penalty

On page fault, the page must be fetched from 

disk

◼ Takes millions of clock cycles

◼ Handled by OS code

Try to minimize page fault rate

◼ Smart replacement algorithms
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3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches

(per core)

L1 I-cache: 32KB, 64-byte 

blocks, 4-way, approx LRU 

replacement, hit time n/a

L1 D-cache: 32KB, 64-byte 

blocks, 8-way, approx LRU 

replacement, write-

back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, hit time 3 cycles

L1 D-cache: 32KB, 64-byte 

blocks, 2-way, LRU 

replacement, write-

back/allocate, hit time 9 cycles

L2 unified 

cache

(per core)

256KB, 64-byte blocks, 8-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 

approx LRU replacement, write-

back/allocate, hit time n/a

L3 unified 

cache 

(shared)

8MB, 64-byte blocks, 16-way, 

replacement n/a, write-

back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 

replace block shared by fewest 

cores, write-back/allocate, hit 

time 32 cycles

n/a: data not available


