

CS270 Computer Organization Fall 2018

Lecture Goals

Review course logistics

- Assignments & quizzes
- Policies
- Organization
- Grading Criteria
- Introduce key concepts
 - Role of Abstraction
 - Software versus Hardware
 - Universal Computing Devices
 Layered Model of Computing
 - ajoroa moaoror compannig

CS270 - Fall Semester 2017

2

Logistics

Lectures: See syllabus Staff: See syllabus Recitations: See syllabus Help desks: See syllabus Office hours: See syllabus Materials on the website:

- <u>http://www.cs.colostate.edu/~cs270</u>
- Piazza: access through Canvas, or directly

CS270 - Fall Semester 2017

Assignments & Quizzes

Assignments

- · Posted on Progress page of the course website
- Programming (C, LC-3) or Logisim circuit designs
- See Canvas for due dates
- Submit via Checkin before 11:59 PM (unless otherwise specified).
- There is no late period don't play Clock Chicken.
- Regrading requests in Piazza (see the syllabus for policies).

Quizzes:

3

5

· Can be on-line (canvas) or in-class (using iClicker)

CS270 - Fall Semester 2017

Policies

Grading Criteria

- Assignments (20%)
- Recitations (10%)
- Quizzes and iClicker (10%)
- Two Midterm Exams (20% each)
- Final Exam (20%)
- Late Policy

None accepted

Academic Integrity

http://www.cs.colostate.edu/~info/student-info.html

- Do your own work
- · Cannot copy and paste any code, unless provided by us

CS270 - Fall Semester 2017

People

Instructors:

- Russ Wakefield
- Graduate Teaching assistants:
- Fahad Ullah
- Zahra Borhani
- Hari Hara Kumar Rajanala
- **Undergraduate Teaching Assistants:**
 - Nick Odell
- Keagan Strawn
- Office hours/locations
- See course website

CS270 - Fall Semester 2017

Organization

1/3 C programming: data types, language syntax, variables and operators, control structures, functions, pointers and arrays, memory model, recursion, I/O, data structures

1/3 Instruction set architecture: machine/assembly code, instruction formats, branching and control, LC-3 programming, subroutines, memory model (stack) 1/3 computer hardware: numbers and bits, transistors, gates, digital logic, state machines, von Neumann model, instruction sets, LC-3 architecture

CS270 - Fall Semester 2017

Top Down Perspective

· Multilayered view:

· Higher layers serves as the specification.

- · Lower layer implements provides the implementation
- · We will see
 - · How a higher level language (C) is implemented by a processor instruction-set architecture (ISA), LC-3 in our case ?
 - · How an ISA is implemented using digital circuits?

8

10

- · How are digital circuits implemented using transistors?
- And so on ...
 - CS270 Fall Semester 2017

Grading Criteria

Letter Grade	Points
A	≥90%
В	≥80%
С	≥70%
D	≥60%

- · We will not cut higher than this, but we may cut lower.
- · Your average score on exams must be ≥65% to receive a passing grade in this course.

CS270 - Fall Semester 2017

How to be successful in this class

- 1) Read the textbook.
- 2) Attend all classes and recitations.
- 3) Take the in-class and on-line quizzes as required.
- 4) Do all the assignments yourself, • ask questions (early! (but not too early!)) if you run into trouble.
- 5) Take advantage of lab sessions where help is available from TAs,
 - · but try to do it yourself first, too much help can be harmful.

CS270 - Fall Semester 2017

Yale N. Patt and Sanjay J. Patel

Slides based on G. T. Byrd, NCState, © McGraw-Hill, With modifications/additions by CSU Faculty

Welcome Aboard

Two Recurring Themes

Abstraction

- Productivity enhancer don't need to worry about details... Can drive a car without knowing how the internal combustion engine works.
- ...until something goes wrong! Where's the dipstick? What's a spark plug?
- Important to understand the components and how they work together.

Hardware vs. Software

- · It's not either/or both are components of a computer system.
- Even if you specialize in one, you should understand capabilities and limitations of both.

1-13

Big Idea #1: Universal Computing Device

All computers, given enough time and memory, are capable of computing exactly the same things.

1-14

Turing Machine

Mathematical model of a device that can perform any computation – Alan Turing (1937)

- ability to read/write symbols on an infinite "tape"
- · state transitions, based on current state and symbol

Every computation can be performed by some Turing machine. (*Turing's thesis*)

Universal Turing Machine

A machine that can implement all Turing machines -- this is also a Turing machine!

• inputs: data, plus a description of computation (other TMs)

Universal Turing Machine

- U is programmable so is a computer!
- instructions are part of the input data
 - · a computer can emulate a Universal Turing Machine

A computer is a universal computing device.

1-16

From Theory to Practice

In theory, computer can compute anything

- that's possible to compute
 - · given enough memory and time

In practice, solving problems involves computing under constraints.

- time
- time
- > weather forecast, next frame of animation, ...
 cost
- > cell phone, automotive engine controller, ...
 power
- > cell phone, handheld video game, ...

Big Idea #2: Transformations Between Layers

How do we solve a problem using a computer?

A systematic sequence of transformations between layers of abstraction.

Deeper and Deeper...

1-20

Descriptions of Each Level

Problem Statement

- · stated using "natural language"
- may be ambiguous, imprecise

Algorithm

- · step-by-step procedure, guaranteed to finish
- · definiteness, effective computability, finiteness

Program

- · express the algorithm using a computer language
- high-level language, low-level language

Instruction Set Architecture (ISA)

- specifies the set of instructions the processor (CPU) can perform
- data types, addressing mode

1-21

Descriptions of Each Level (cont.)

Microarchitecture

- · detailed organization of a processor implementation
- different implementations of a single ISA

Logic Circuits

- · combine basic operations to realize microarchitecture
- many different ways to implement a single function (e.g., addition)

Devices

· properties of materials, manufacturability

1-22

iClicker Quiz (trial)

Registration

- Please register your iClicker using canvas and bring it every time
- · Ensure you are using the right channel

Quiz: Pick one: Instruction Set Architecture (ISA)

- · A. specifies the set of instructions the CPU can perform,
- · B. Architecture of a high level language
- · C. How transistors are used to form digital circuits
- D. Architecture of a C program
- E. All of the above

iClicker Quiz (trial) Answer

Quiz: Pick one: Instruction Set Architecture (ISA)

- A. specifies the set of instructions the CPU can perform
- B. Architecture of a high level language
- C. How transistors are used to form digital circuits
- D. Architecture of a C program
- · E. All of the above

Many Choices at Each Level

Solve a system of equations

Course Outline

Bits and Bytes

How do we represent information using electrical signals?

C Programming

How do we write programs in C?

How do we implement high-level programming constructs?

- Instruction set architecture/Assembly language
 - What operations (instructions) will we implement?
 - How do we use processor instructions to implement algorithms?
 - How do we write modular, reusable code? (subroutines)
 - I/O, Traps, and Interrupts: How does processor communicate with outside world?

Digital Logic and processor architecture

- How do we build circuits to process and store information?
- How do we build a processor out of logic elements?

Computer systems: what is next?

1-26