
1

CS270
Computer Organization

Fall 2018

2
CS270 - Fall Semester 2017

Lecture Goals

Review course logistics
• Assignments & quizzes

• Policies

• Organization

• Grading Criteria

Introduce key concepts
• Role of Abstraction

• Software versus Hardware

• Universal Computing Devices

• Layered Model of Computing

3
CS270 - Fall Semester 2017

Logistics

Lectures: See syllabus

Staff: See syllabus

Recitations: See syllabus

Help desks: See syllabus

Office hours: See syllabus

Materials on the website:
• http://www.cs.colostate.edu/~cs270

Piazza: access through Canvas, or directly

4
CS270 - Fall Semester 2017

Assignments & Quizzes

Assignments
• Posted on Progress page of the course website

• Programming (C, LC-3) or Logisim circuit designs

• See Canvas for due dates

• Submit via Checkin before 11:59 PM (unless otherwise

specified).

• There is no late period - don't play Clock Chicken.

• Regrading requests in Piazza (see the syllabus for policies).

Quizzes:
• Can be on-line (canvas) or in-class (using iClicker)

5
CS270 - Fall Semester 2017

Policies

Grading Criteria
• Assignments (20%)

• Recitations (10%)

• Quizzes and iClicker (10%)

• Two Midterm Exams (20% each)

• Final Exam (20%)

Late Policy
• None accepted

Academic Integrity
• http://www.cs.colostate.edu/~info/student-info.html

• Do your own work

• Cannot copy and paste any code, unless provided by us

6
CS270 - Fall Semester 2017

People

Instructors:
• Russ Wakefield

Graduate Teaching assistants:
• Fahad Ullah

• Zahra Borhani

• Hari Hara Kumar Rajanala

Undergraduate Teaching Assistants:
• Nick Odell

• Keagan Strawn

Office hours/locations
• See course website

http://www.cs.colostate.edu/~cs270
http://www.cs.colostate.edu/~info/student-info.html

2

7
CS270 - Fall Semester 2017

Organization

1/3 C programming: data types, language syntax,

variables and operators, control structures, functions,

pointers and arrays, memory model, recursion, I/O, data

structures

1/3 Instruction set architecture: machine/assembly

code, instruction formats, branching and control, LC-3

programming, subroutines, memory model (stack)

1/3 computer hardware: numbers and bits, transistors,

gates, digital logic, state machines, von Neumann

model, instruction sets, LC-3 architecture

8
CS270 - Fall Semester 2017

Top Down Perspective

• Multilayered view:
• Higher layers serves as the specification.

• Lower layer implements provides the implementation

• We will see
• How a higher level language (C) is implemented by a

processor instruction-set architecture (ISA), LC-3 in

our case ?

• How an ISA is implemented using digital circuits?

• How are digital circuits implemented using

transistors?

• And so on …

9
CS270 - Fall Semester 2017

Grading Criteria

Letter Grade Points

A ≥90%

B ≥80%

C ≥70%

D ≥60%

• We will not cut higher than this, but we

may cut lower.

• Your average score on exams must be

≥65% to receive a passing grade in this

course.

10
CS270 - Fall Semester 2017

How to be successful in this class

1) Read the textbook.

2) Attend all classes and recitations.

3) Take the in-class and on-line quizzes as required.

4) Do all the assignments yourself,

• ask questions (early! (but not too early!)) if you run into

trouble.

5) Take advantage of lab sessions where help is

available from TAs,

• but try to do it yourself first, too much help can be

harmful.

1-11

Text book:

Introduction to Computing Systems:
From Bits and Gates to C and Beyond

2nd Edition

Yale N. Patt and Sanjay J. Patel

Slides based on G. T. Byrd, NCState, © McGraw-Hill,

With modifications/additions by CSU Faculty

Chapter 1

Welcome Aboard

3

1-13

Two Recurring Themes

Abstraction

• Productivity enhancer – don’t need to worry about details…

Can drive a car without knowing how

the internal combustion engine works.

• …until something goes wrong!

Where’s the dipstick? What’s a spark plug?

• Important to understand the components and

how they work together.

Hardware vs. Software

• It’s not either/or – both are components of a computer system.

• Even if you specialize in one,

you should understand capabilities and limitations of both.

1-14

Big Idea #1: Universal Computing Device

All computers, given enough time and memory,

are capable of computing exactly the same things.

= =

PDA
Workstation

Supercomputer

1-15

Turing Machine

Mathematical model of a device that can perform
any computation – Alan Turing (1937)

• ability to read/write symbols on an infinite “tape”

• state transitions, based on current state and symbol

Every computation can be performed by some
Turing machine. (Turing’s thesis)

Tadda,b a+b

Turing machine that adds

Tmul
a,b ab

Turing machine that multiplies

For more info about Turing machines, see

http://www.wikipedia.org/wiki/Turing_machine/

For more about Alan Turing, see

http://www.turing.org.uk/turing/

1-16

Universal Turing Machine

A machine that can implement all Turing machines
-- this is also a Turing machine!

• inputs: data, plus a description of computation (other TMs)

U
a,b,c c(a+b)

Universal Turing Machine

Tadd, Tmul

U is programmable – so is a computer!

• instructions are part of the input data

• a computer can emulate a Universal Turing Machine

A computer is a universal computing device.

1-17

From Theory to Practice

In theory, computer can compute anything

that’s possible to compute

• given enough memory and time

In practice, solving problems involves

computing under constraints.

• time

➢weather forecast, next frame of animation, ...

• cost

➢ cell phone, automotive engine controller, ...

• power

➢ cell phone, handheld video game, ...

1-18

Big Idea #2: Transformations Between Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Digital Circuits

Devices

Algorithms

4

1-19

How do we solve a problem using a computer?

A systematic sequence of transformations between

layers of abstraction.

Problem

Algorithm

Program

Software Design:

choose algorithms and data structures

Programming:

use language to express design

Instr Set

Architecture

Compiling/Interpreting:

convert language to

machine instructions

1-20

Deeper and Deeper…

Instr Set

Architecture

Microarch

DigCircuits

Processor Design:

choose structures to implement ISA

Logic/Circuit Design:

gates and low-level circuits to

implement components

Devices

Process Engineering & Fabrication:

develop and manufacture

lowest-level components

1-21

Descriptions of Each Level

Problem Statement

• stated using "natural language"

• may be ambiguous, imprecise

Algorithm

• step-by-step procedure, guaranteed to finish

• definiteness, effective computability, finiteness

Program

• express the algorithm using a computer language

• high-level language, low-level language

Instruction Set Architecture (ISA)

• specifies the set of instructions the processor (CPU) can

perform

• data types, addressing mode

1-22

Descriptions of Each Level (cont.)

Microarchitecture

• detailed organization of a processor implementation

• different implementations of a single ISA

Logic Circuits

• combine basic operations to realize microarchitecture

• many different ways to implement a single function

(e.g., addition)

Devices

• properties of materials, manufacturability

1-23

iClicker Quiz (trial)

Registration

• Please register your iClicker using canvas and bring it every

time

• Ensure you are using the right channel

Quiz: Pick one: Instruction Set Architecture (ISA)

• A. specifies the set of instructions the CPU can perform,

• B. Architecture of a high level language

• C. How transistors are used to form digital circuits

• D. Architecture of a C program

• E. All of the above

1-24

iClicker Quiz (trial) Answer

Quiz: Pick one: Instruction Set Architecture (ISA)

• A. specifies the set of instructions the CPU can perform

• B. Architecture of a high level language

• C. How transistors are used to form digital circuits

• D. Architecture of a C program

• E. All of the above

5

1-25

Many Choices at Each Level

Solve a system of equations

Gaussian

elimination

Jacobi

iteration
Red-black SOR Multigrid

FORTRAN C C++ Java

Intel x86PowerPC ARM

Centrino Pentium 4 Core

Ripple-carry adder Carry-lookahead adder

CMOS Bipolar GaAs

Tradeoffs:

cost

performance

power

(etc.)

1-26

Course Outline

Bits and Bytes

• How do we represent information using electrical signals?

C Programming

• How do we write programs in C?

• How do we implement high-level programming constructs?

Instruction set architecture/Assembly language

• What operations (instructions) will we implement?

• How do we use processor instructions to implement algorithms?

• How do we write modular, reusable code? (subroutines)

• I/O, Traps, and Interrupts: How does processor communicate with

outside world?

Digital Logic and processor architecture

• How do we build circuits to process and store information?

• How do we build a processor out of logic elements?

Computer systems: what is next?

