
Midterm 2 Review
Chapters 4-16

LC-3

8-2

ISA

You will be allowed to use the one page summary.

5-3

LC-3 Overview: Instruction Set

Opcodes

• 15 opcodes

• Operate instructions: ADD, AND, NOT

• Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

• Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP

• some opcodes set/clear condition codes, based on result:

➢N = negative, Z = zero, P = positive (> 0)

Data Types

• 16-bit 2’s complement integer

Addressing Modes

• How is the location of an operand specified?

• non-memory addresses: immediate, register

• memory addresses: PC-relative, indirect, base+offset

5-4

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

Assembly Ex:

Add R3, R3, #1

5-5

Load and Store instructions

Example: LD R1, Label1

R1 is loaded from memory location labelled Label1

Example: LDI R1, Label1

R1 is loaded from address found at location Label1

Example: LDR R1, R4, #1

R1 is loaded from address pointed by R4 with offset 1.

Store instructions use the same addressing modes, except the

register contents are written to a memory location.

5-6

LEA (Immediate)

Assembly Ex:

LEA R1, Lab1

Used to initialize a

pointer.

5-7

Condition Codes

LC-3 has three condition code registers:

N -- negative

Z -- zero

P -- positive (greater than zero)

• Set by any instruction that writes a value to a register

(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times

• Based on the last instruction that altered a register

Assembly Ex: BRz, Label

5-8

Count characters in a “file”: Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Count Characters

Symbol Table:
fill yourself

.ORIG x3000

AND R2, R2, #0 ; init counter

LD R3, PTR ; R3 pointer to chars

GETC ; R0 gets char input

LDR R1, R3, #0 ; R1 gets first char

TEST ADD R4, R1, #-4 ; Test for EOT

BRz OUTPUT ; done?

;Test character for match, if so increment count.

NOT R1, R1

ADD R1, R1, R0 ; If match, R1 = xFFFF

NOT R1, R1 ; If match, R1 = x0000

BRnp GETCHAR ; No match, no increment

ADD R2, R2, #1

; Get next character from file.

GETCHAR ADD R3, R3, #1 ; Point to next cha.

LDR R1, R3, #0 ; R1 gets next char

BRnzp TEST

; Output the count.

OUTPUT LD R0, ASCII ; Load ASCII template

ADD R0, R0, R2 ; Covert binary to ASCII

OUT ; ASCII code is displayed

HALT ; Halt machine
; Storage for pointer and ASCII template
ASCII .FILL x0030
PTR .FILL x4000

.END

9

Symbol Address

TEST x3004

GETCHAR x300B

OUTPUT

ASCII

PTR x3013

7-10

Assembler Directives

Pseudo-operations

• do not refer to operations executed by program

• used by assembler

• look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with

value n

.STRINGZ n-character

string

allocate n+1 locations,

initialize w/characters and null

terminator

7-11

Practice

Using the symbol table constructed earlier,

translate these statements into LC-3 machine language.

Statement Machine Language

LD R3,PTR 0010 011 0 0001 0000

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR 0000 101 0 0000 0001

Symbol ptr: x3013, LD is at x3002
Offset needed: x11- x01

4-12

Memory

2k x m array of stored bits

Address

• unique (k-bit) identifier of location

Contents

• m-bit value stored in location

Basic Operations:

LOAD

• read a value from a memory location

STORE

• write a value to a memory location

•
•
•

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

9-13

TRAP Instruction

Trap vector

• identifies which system call to invoke

• 8-bit index into table of service routine addresses

➢in LC-3, this table is stored in memory at 0x0000 – 0x00FF

➢8-bit trap vector is zero-extended into 16-bit memory address

Where to go

• lookup starting address from table; place in PC

How to get back

• save address of next instruction (current PC) in R7

7-14

Trap Codes

LC-3 assembler provides “pseudo-instructions” for

each trap code, so you don’t have to remember them.

Code Equivalent Description

HALT TRAP x25 Halt execution and print message to

console.

IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.

Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

9-15

Example: Using the TRAP Instruction

.ORIG x3000

LD R2, TERM ; Load negative ASCII ‘7’

LD R3, ASCII ; Load ASCII difference

AGAIN TRAP x23 ; input character

ADD R1, R2, R0 ; Test for terminate

BRz EXIT ; Exit if done

ADD R0, R0, R3 ; Change to lowercase

TRAP x21 ; Output to monitor...

BRnzp AGAIN ; ... again and again...

TERM .FILL xFFC9 ; -‘7’

ASCII .FILL x0020 ; lowercase bit

EXIT TRAP x25 ; halt

.END

9-16

Example: Output Service Routine
.ORIG x0430 ; syscall address

ST R7, SaveR7 ; save R7 & R1

ST R1, SaveR1

; ----- Write character

TryWrite LDI R1, DSR ; get status

BRzp TryWrite ; look for bit 15 on

WriteIt STI R0, DDR ; write char

; ----- Return from TRAP

Return LD R1, SaveR1 ; restore R1 & R7

LD R7, SaveR7

RET ; back to user

DSR .FILL xF3FC

DDR .FILL xF3FF

SaveR1 .FILL 0

SaveR7 .FILL 0

.END

stored in table,
location x21

9-17

JSR Instruction

Jumps to a location (like a branch but unconditional),

and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”

• target address is PC-relative (PC + Sext(IR[10:0]))

• bit 11 specifies addressing mode

➢if =1, PC-relative: target address = PC + Sext(IR[10:0])

➢if =0, register: target address = contents of register IR[8:6]

9-18

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3

ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!

9-19

RET (JMP R7)

How do we transfer control back to

instruction following the TRAP?

We saved old PC in R7.

• JMP R7 gets us back to the user program at the right spot.

• LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.

Must make sure that service routine does not

change R7, or we won’t know where to return.

8-20

Stack

Instructions are stored in code segment

Global data is stored in data segment

Local variables, including arryas, uses stack

Dynamically allocated memory uses heap

21

Memory Usage

Code

Data

Heap

↓

↑

Stack

◼Code segment is write protected

◼ Initialized and uninitialized globals

◼Stack size is usually limited

◼Stack generally grows from higher to

lower addresses.

21

10-22

Basic Push and Pop Code

For our implementation, stack grows downward

(when item added, TOS moves closer to 0)

Push R0

ADD R6, R6, #-1 ; decrement stack ptr

STR R0, R6, #0 ; store data (R0)

Pop R0

LDR R0, R6, #0 ; load data from TOS

ADD R6, R6, #1 ; decrement stack ptr

Sometimes a Pop only adjusts the SP.

14-23

Run-Time Stack

main

Memory

R6

Watt

Memory

R6

main

Memory

main

Before call During call After call

R5

R5

R6

R5

14-24

Activation Record
int NoName(int a, int b)

{

int w, x, y;

.

.

.

return y;

}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

4
5
0
-1
-2

NoName
NoName
NoName
NoName
NoName

y

x

w

dynamic link

return address

return value

a

b

bookkeeping

locals

args

R5

Compiler generated Symbol table.
Offset relative to FP R5

Lower addresses

14-25

Example Function Call

int Volta(int q, int r)

{

int k;

int m;

...

return k;

}

int Watt(int a)

{

int w;

...

w = Volta(w,10);

...

return w;

}

14-26

Summary of LC-3 Function Call Implementation

1. Caller pushes arguments (last to first).

2. Caller invokes subroutine (JSR).

3. Callee allocates return value, pushes R7 and R5.

4. Callee allocates space for local variables.

5. Callee executes function code.

6. Callee stores result into return value slot.

7. Callee pops local vars, pops R5, pops R7.

8. Callee returns (JMP R7).

9. Caller loads return value and pops arguments.

10. Caller resumes computation…

16-27

Example: LC-3 Code

; i is 1st local (offset 0), ptr is 2nd (offset -1)

; i = 4;

AND R0, R0, #0 ; clear R0

ADD R0, R0, #4 ; put 4 in R0

STR R0, R5, #0 ; store in i

; ptr = &i;

ADD R0, R5, #0 ; R0 = R5 + 0 (addr of i)

STR R0, R5, #-1 ; store in ptr

; *ptr = *ptr + 1;

LDR R0, R5, #-1 ; R0 = ptr

LDR R1, R0, #0 ; load contents (*ptr)

ADD R1, R1, #1 ; add one

STR R1, R0, #0 ; store result where R0 points

8-28

Input/Output

8-29

Input from Keyboard

When a character is typed:

• its ASCII code is placed in bits [7:0] of KBDR

(bits [15:8] are always zero)

• the “ready bit” (KBSR[15]) is set to one

• keyboard is disabled -- any typed characters will be ignored

When KBDR is read:

• KBSR[15] is set to zero

• keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

8-30

Basic Input Routine

new

char?

read

character

YES

NO

Polling

POLL LDI R0, KBSRPtr

BRzp POLL

LDI R0, KBDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

8-31

Output to Monitor

When Monitor is ready to display another character:

• the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:

• DSR[15] is set to zero

• character in DDR[7:0] is displayed

• any other character data written to DDR is ignored

(while DSR[15] is zero)

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

8-32

Keyboard Echo Routine

Usually, input character is also printed to screen.

• User gets feedback on character typed

and knows its ok to type the next character.

new

char?

read

character

YES

NO

screen

ready?

write

character

YES

NO

POLL1 LDI R0, KBSRPtr

BRzp POLL1

LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr

BRzp POLL2

STI R0, DDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

8-33

Interrupt-Driven I/O

External device can:

(1) Force currently executing program to stop;

(2) Have the processor satisfy the device’s needs; and

(3) Resume the stopped program as if nothing happened.

Interrupt is an unscripted subroutine call, triggered by an external

event.

8-34

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:

• A way for the I/O device to signal the CPU that an

interesting event has occurred.

• A way for the CPU to test whether the interrupt signal is set

and whether its priority is higher than the current program.

Generating Signal

• Software sets "interrupt enable" bit in device register.

• When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal

to processor

8-35

Testing for Interrupt Signal

CPU looks at signal between STORE and FETCH phases.

If not set, continues with next instruction.

If set, transfers control to interrupt service routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to

ISR

NO

YES

More details in Chapter 10.

10-36

Processor State

• Must be saved before servicing an interrupt.

• What state is needed to completely capture the

state of a running process?

Processor Status Register
• Privilege [15], Priority Level [10:8], Condition Codes [2:0]

LC-3: 8 priority levels (PL0-PL7)

Program Counter

• Pointer to next instruction to be executed.

Registers

• All temporary state of the process that’s not stored in memory.

Direct Memory Access Structure

high-speed I/O devices

Device controller transfers

blocks of data from buffer

storage directly to main

memory without CPU

intervention

Only one interrupt is

generated per block

