ovf rd.tar /R4

Chapter 4
The Von Neumann
Model

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Computing Layers

Problems

Devices

CS270 - Spring 2012 - Colorado State
University 2

Copyright © The McGraw-Hill C:

. Inc. ission required for or display.

The Stored Program Computer

1943: ENIAC

= Presper Eckert and John Mauchly -- first general electronic computer.
(or was it John V. Atanasoff in 19397?)

= Hard-wired program -- settings of dials and switches.
1944: Beginnings of EDVAC

= among other improvements, includes program stored in memory
1945: John von Neumann

= wrote a report on the stored program concept,
known as the First Draft of a Report on EDVAC

The basic structure proposed in the draft became known

as the “von Neumann machine” (or model).
= a memory, containing instructions and data
= a processing unit, for performing arithmetic and logical operations
= a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Von Neumann Model

MEMORY

e [MAR] [MDR]

H Y

A
INPUT | | OUTPUT
Keyboard Monitor
Mouse PROCESSING UNIT Printer
Scanner : LED

Disk Disk

CONTROL UNIT
P>

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Memory

@ Organization
=« 2K x m array of stored bits

0000
@ Address 882(1)
= unique (k-bit) identifier of location 82(1)(1) 00101101
0101
@ Contents o1
= m-bit value stored in location
@ Basic Operations: 1101 |—10100010
= LOAD: read a value from a R
memory location
= STORE: write a value to a
memory location
CS270 - Spring 2012 - Colorado State
University 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interface to Memory
@ How does CPU get data to/from memory?

« MAR: Memory Address Register h
« MDR: Memory Data Register AEHIORY
@ To a location (A): MAR MDR)

1. Write the address (A) into the MAR.
.. Send a “read” signal to the memory.
;. Read the data from MDR.
@ To a value (X) to a location (A):
1. Write the data (X) to the MDR.
> Write the address (A) into the MAR.
s Send a “write” signal to the memory.

CS270 - Spring 2012 - Colorado State
University 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing Unit
@ Functional Units

« ALU = Arithmetic and Logic Unit ~
= could have many functional units. PROCESSOR
(multiply, square root, ...)
= LC-3 performs ADD, AND, NOT ALU REGs
@ Registers

=« Small, temporary storage

= Operands and results of functional units

=« LC-3 has eight registers (RO, ..., R7), each 16 bits wide
@ Word Size

= number of bits processed by ALU in one instruction

= also width of registers

= LC-3is 16 bits CS270 - Spring 2012 - Colorado State

University 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Input and Output

@ Devices for getting data into and out of computer
memory

INPUT ouTPUT

@ Each device has its own interface, {amant Wonitor
usually a set of registers like the Scanner LeD
memory’ s MAR and MDR o o

=« LC-3 supports keyboard (input) and monitor (output)

=« keyboard: data (KBDR) and status (KBSR) registers

= monitor: data register (DDR) and status register (DSR)
@ Some devices provide both input and output

« disk, network

@ Program that controls access to a device is
usually called a driver.

CS270 - Spring 2012 - Colorado State
University 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Unit

@ Orchestrates execution of the program

@ Instruction Register (IR) contains
the current instruction.

CONTROL

\

@ Program Counter (PC) contains ([JPr Ct> Ins Reg

the address of the next instruction to be executed.

@ Control unit:
« reads an instruction from memory
@ the instruction’ s address is in the PC
» interprets the instruction, generating signals
that tell the other components what to do
@ an instruction may take many machine cycles to complete

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing

Fetch instruction from memory
Decode instruction

Evaluate address

Fetch operands from memory
Execute operation

Store result

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction

@ The instruction is the fundamental unit of work:
= opcode: operation to be performed
= operands: data/locations to be used for operation

@ An instruction is encoded as a sequence of bits.
(Just like data!)

« Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

= Control unit interprets instruction: generates sequence
of control signals to carry out operation.
=« Operation is either executed completely, or not at all.

@ A computer’s instructions and their formats is known as
its Instruction Set Architecture (ISA).

CS270 - Spring 2012 - Colorado State
University "

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 ADD Instruction

@ LC-3 has 16-bit instructions.
« Each instruction has a four-bit opcode, bits [15:12].

@ LC-3 has eight registers (R0-R7) for temporary

storage.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD Dst Srcl |00 O| Src?2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0
00011100100/ 00/110

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

CS270 - Spring 2012 - Colorado State
University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 LDR Instruction
@ Load instruction -- reads data from memory
@ Base + offset mode:
= add offset to base register -- result is memory address
= load from memory address into destination register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LDR Dst Base Offset

15 14 13 12 11 10 S 8 7 6 5 4 3 2

o)

1. 0
0110010011 000110

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

CS270 - Spring 2012 - Colorado State
University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: FETCH

@ Load next instruction (at address stored
in PC) from memory into Instruction
Register (IR).
= Copy contents of PC into MAR.
=« Send “read” signal to memory.
=« Copy contents of MDR into IR.

@ Then increment PC, so that it points to
the next instruction in sequence.
=« PC becomes PC+1.

CS270 - Spring 2012 - Colorado State
University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: DECODE

@ First identify the opcode.

« In LC-3, this is always the first four bits of
instruction.

= A 4-to-16 decoder asserts a control line
corresponding to the desired opcode.
@ Depending on opcode, identify other
operands from the remaining bits.
=« Example:
ofor LDR, last 6 bits is offset
ofor ADD, last 3 bits is source operand #2

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: EVALUATE
ADDRESS

@ For instructions that require memory
access, compute address used for
access.

@ Examples:
= add offset to base register (as in LDR)
= add offset to PC
= add offset to zero

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: FETCH
OPERANDS

@ Obtain source operands needed to
perform operation.

@ Examples:
= load data from memory (LDR)
= read data from register file (ADD)

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: EXECUTE

@ Perform the operation,
using the source operands.

@ Examples:
= send operands to ALU and assert ADD signal
= do nothing (e.g., for loads and stores)

CS270 - Spring 2012 - Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: STORE
RESULT

@ Write results to destination.
(register or memory)

@ Examples:
= result of ADD is placed in destination register

= result of memory load is placed in destination
register

= for store instruction, data is stored to memory
owrite address to MAR, data to MDR
@assert WRITE signal to memory

CS270 - Spring 2012 - Colorado State
University 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Changing the Sequence of Instructions

@ In the FETCH phase,
we increment the Program Counter by 1.

@ What if we don’ t want to always execute the
instruction
that follows this one?
= examples: loop, if-then, function call

@ Need special instructions that change the contents
of the PC.

@ These are called control instructions.
= jumps are unconditional -- they always change the PC

= branches are conditional -- they change the PC only if
some condition is true (e.g., the result of an ADD is
zero)

CS270 - Spring 2012 - Colorado State
University 20

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 JMP Instruction

@ Set the PC to the value contained in a register.
This becomes the address of the next instruction
to fetch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
JMP O 0 O] Base |1OOOO0OO0OO

15 14 13 12 11 10 9

8 7 6
1100000011 0000O00O0

“Load the contents of R3 into the PC.”

CS270 - Spring 2012 - Colorado State
University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing Summary

@ Instructions look just like data -- it’ s all
interpretation.
@ Three basic kinds of instructions:
= computational instructions (ADD, AND, ...)
« data movement instructions (LD, ST, ...)
= control instructions (JMP, BRnz, ...)
@ Six basic phases of instruction processing:

F—-D—-EA—-=OP—-=EX—=S

= not all phases are needed by every instruction
« phases may take variable number of machine cycles

CS270 - Spring 2012 - Colorado State
University 22

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Unit State Diagram

@ The control unit is a state machine. Here is part of
a simplified state diagram for the LC-3:

MAR « PC
PC « PC +1] []
LN]
9
v V'[
B
MDR « M[MAR] Igﬁ%‘ﬁg]
L]
G
N
IR « MDR [] coe []—

A more complete state diagram is in Appendix C.

cs27¢ véprbeanerecubdesstardable after Chapter 5.
University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stopping the Clock
@ Control unit will repeat instruction processing
sequence as long as clock is running.

= If not processing instructions from your application,
then it is processing instructions from the Operating

System (OS).
= The OS is a special program Clock CLOCK
Generator
that manages processor & 0
and other resources. -
@ To stop the computer: RUN

= AND the clock generator signal with ZERO

= When control unit stops seeing the CLOCK signal, it stops
processing.

CS270 - Spring 2012 - Colorado State
University 24

