
1

Chapter 4
The Von Neumann

Model

tar cvf r4.tar ../R4
tar cvf r4.tar ../R4
tar cvf r4.tar ../R4

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring 2012 - Colorado State
University

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

2

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Stored Program Computer
! 1943: ENIAC

n  Presper Eckert and John Mauchly -- first general electronic computer.
(or was it John V. Atanasoff in 1939?)

n  Hard-wired program -- settings of dials and switches.
! 1944: Beginnings of EDVAC

n  among other improvements, includes program stored in memory
! 1945: John von Neumann

n  wrote a report on the stored program concept,
known as the First Draft of a Report on EDVAC

! The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).
n  a memory, containing instructions and data
n  a processing unit, for performing arithmetic and logical operations
n  a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm
CS270 - Spring 2012 - Colorado State

University 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Von Neumann Model

CS270 - Spring 2012 - Colorado State
University

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Mon itor
P rin te r
L E D
D is k

INPUT
K eyboa rd
Mous e
S c a nne r
D is k

4

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Memory
! Organization

n  2k x m array of stored bits

! Address
n  unique (k-bit) identifier of location

! Contents
n  m-bit value stored in location

! Basic Operations:
n  LOAD: read a value from a

memory location
n  STORE: write a value to a

memory location

• • •

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

CS270 - Spring 2012 - Colorado State
University 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interface to Memory
! How does CPU get data to/from memory?

n  MAR: Memory Address Register
n  MDR: Memory Data Register

! To LOAD a location (A):
1.  Write the address (A) into the MAR.
2.  Send a “read” signal to the memory.
3.  Read the data from MDR.

! To STORE a value (X) to a location (A):
1.  Write the data (X) to the MDR.
2.  Write the address (A) into the MAR.
3.  Send a “write” signal to the memory.

CS270 - Spring 2012 - Colorado State
University 6

MAR MDR

MEMORY

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing Unit
! Functional Units

n  ALU = Arithmetic and Logic Unit
n  could have many functional units.

(multiply, square root, …)
n  LC-3 performs ADD, AND, NOT

! Registers
n  Small, temporary storage
n  Operands and results of functional units
n  LC-3 has eight registers (R0, …, R7), each 16 bits wide

! Word Size
n  number of bits processed by ALU in one instruction
n  also width of registers
n  LC-3 is 16 bits CS270 - Spring 2012 - Colorado State

University 7

ALU REGs

PROCESSOR

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Input and Output
! Devices for getting data into and out of computer

memory
! Each device has its own interface,

usually a set of registers like the
memory’s MAR and MDR
n  LC-3 supports keyboard (input) and monitor (output)
n  keyboard: data (KBDR) and status (KBSR) registers
n  monitor: data register (DDR) and status register (DSR)

! Some devices provide both input and output
n  disk, network

! Program that controls access to a device is
usually called a driver.

INPUT
K e y b o a rd
M o u s e
S c a n n e r
D i s k

OUTPUT
M o n i t o r
P r i n t e r
L E D
D i s k

CS270 - Spring 2012 - Colorado State
University 8

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

! Orchestrates execution of the program
! Instruction Register (IR) contains

the current instruction.
! Program Counter (PC) contains

the address of the next instruction to be executed.
! Control unit:

n  reads an instruction from memory
! the instruction’s address is in the PC

n  interprets the instruction, generating signals
that tell the other components what to do
! an instruction may take many machine cycles to complete

Control Unit

CS270 - Spring 2012 - Colorado State
University 9

Ins Reg

CONTROL

Pr Ct

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing

Decode instruction

Evaluate address

Fetch operands from memory

Execute operation

Store result

Fetch instruction from memory

CS270 - Spring 2012 - Colorado State
University 10

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction
! The instruction is the fundamental unit of work:

n  opcode: operation to be performed
n  operands: data/locations to be used for operation

! An instruction is encoded as a sequence of bits.
(Just like data!)
n  Often, but not always, instructions have a fixed length,

such as 16 or 32 bits.
n  Control unit interprets instruction: generates sequence

of control signals to carry out operation.
n  Operation is either executed completely, or not at all.

! A computer’s instructions and their formats is known as
its Instruction Set Architecture (ISA).

CS270 - Spring 2012 - Colorado State
University 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 ADD Instruction

! LC-3 has 16-bit instructions.
n  Each instruction has a four-bit opcode, bits [15:12].

! LC-3 has eight registers (R0-R7) for temporary
storage.
n  Sources and destination of ADD are registers.

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

CS270 - Spring 2012 - Colorado State
University 12

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 LDR Instruction
! Load instruction -- reads data from memory
! Base + offset mode:

n  add offset to base register -- result is memory address
n  load from memory address into destination register

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

CS270 - Spring 2012 - Colorado State
University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: FETCH

! Load next instruction (at address stored
in PC) from memory into Instruction
Register (IR).
n  Copy contents of PC into MAR.
n  Send “read” signal to memory.
n  Copy contents of MDR into IR.

! Then increment PC, so that it points to
the next instruction in sequence.
n  PC becomes PC+1.

EA

OP

EX

S

F

D

CS270 - Spring 2012 - Colorado State
University 14

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: DECODE

! First identify the opcode.
n  In LC-3, this is always the first four bits of

instruction.
n  A 4-to-16 decoder asserts a control line

corresponding to the desired opcode.
! Depending on opcode, identify other

operands from the remaining bits.
n  Example:

! for LDR, last 6 bits is offset
! for ADD, last 3 bits is source operand #2

EA

OP

EX

S

F

D

CS270 - Spring 2012 - Colorado State
University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: EVALUATE
ADDRESS

! For instructions that require memory
access, compute address used for
access.

! Examples:
n  add offset to base register (as in LDR)
n  add offset to PC
n  add offset to zero

EA

OP

EX

S

F

D

CS270 - Spring 2012 - Colorado State
University 16

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: FETCH
OPERANDS

! Obtain source operands needed to
perform operation.

! Examples:
n  load data from memory (LDR)
n  read data from register file (ADD)

EA

OP

EX

S

F

D

CS270 - Spring 2012 - Colorado State
University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: EXECUTE

! Perform the operation,
using the source operands.

! Examples:
n  send operands to ALU and assert ADD signal
n  do nothing (e.g., for loads and stores)

EA

OP

EX

S

F

D

CS270 - Spring 2012 - Colorado State
University 18

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: STORE
RESULT

! Write results to destination.
(register or memory)

! Examples:
n  result of ADD is placed in destination register
n  result of memory load is placed in destination

register
n  for store instruction, data is stored to memory

! write address to MAR, data to MDR
! assert WRITE signal to memory

EA

OP

EX

S

F

D

CS270 - Spring 2012 - Colorado State
University 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Changing the Sequence of Instructions
! In the FETCH phase,

we increment the Program Counter by 1.
! What if we don’t want to always execute the

instruction
that follows this one?
n  examples: loop, if-then, function call

! Need special instructions that change the contents
of the PC.

! These are called control instructions.
n  jumps are unconditional -- they always change the PC
n  branches are conditional -- they change the PC only if

some condition is true (e.g., the result of an ADD is
zero)

CS270 - Spring 2012 - Colorado State
University 20

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 JMP Instruction

! Set the PC to the value contained in a register.
This becomes the address of the next instruction
to fetch.

“Load the contents of R3 into the PC.”

CS270 - Spring 2012 - Colorado State
University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing Summary

! Instructions look just like data -- it’s all
interpretation.

! Three basic kinds of instructions:
n  computational instructions (ADD, AND, …)
n  data movement instructions (LD, ST, …)
n  control instructions (JMP, BRnz, …)

! Six basic phases of instruction processing:
 F → D → EA → OP → EX → S

n  not all phases are needed by every instruction
n  phases may take variable number of machine cycles

CS270 - Spring 2012 - Colorado State
University 22

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Unit State Diagram
! The control unit is a state machine. Here is part of

a simplified state diagram for the LC-3:

A more complete state diagram is in Appendix C.
It will be more understandable after Chapter 5. CS270 - Spring 2012 - Colorado State

University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stopping the Clock
! Control unit will repeat instruction processing

sequence as long as clock is running.
n  If not processing instructions from your application,

then it is processing instructions from the Operating
System (OS).

n  The OS is a special program
that manages processor
and other resources.

! To stop the computer:
n  AND the clock generator signal with ZERO
n  When control unit stops seeing the CLOCK signal, it stops

processing.
CS270 - Spring 2012 - Colorado State

University 24

