
1

Chapter 5
The LC-3

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Spring 2012 - Colorado State University

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring 2012 - Colorado State University

Instruction Set Architecture
! ISA = All of the programmer-visible

components and operations of the computer
n  memory organization

! address space -- how may locations can be addressed?
! addressibility -- how many bits per location?

n  register set
! how many? what size? how are they used?

n  instruction set
! opcodes
! data types
! addressing modes

! ISA provides all information needed for someone that
wants to write a program in machine language
n  or translate from a high-level language to machine language.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring 2012 - Colorado State University

LC-3 Overview: Memory and Registers
! Memory

n  address space: 216 locations (16-bit addresses)
n  addressability: 16 bits

! Registers
n  temporary storage, accessed in a single machine cycle

! accessing memory takes longer than a single cycle
n  eight general-purpose registers: R0 - R7

! each 16 bits wide
! how many bits to uniquely identify a register?

n  other registers
! not directly addressable, but used by (and affected

by) instructions
! PC (program counter), condition codes

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring 2012 - Colorado State University

LC-3 Overview: Instruction Set
! Opcodes

n  15 opcodes, 3 types of instructions
n  Operate: ADD, AND, NOT
n  Data movement: LD, LDI, LDR, LEA, ST, STR, STI
n  Control: BR, JSR/JSRR, JMP, RTI, TRAP
n  some opcodes set/clear condition codes, based on result:

! N = negative, Z = zero, P = positive (> 0)
! Data Types

n  16-bit 2’s complement integer
! Addressing Modes

n  How is the location of an operand specified?
n  non-memory addresses: immediate, register
n  memory addresses: PC-relative, indirect, base+offset

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring 2012 - Colorado State University

Operate Instructions

! Only three operations: ADD, AND, NOT
! Source and destination operands are registers

n  These instructions do not reference memory.
n  ADD and AND can use “immediate” mode,

where one operand is hard-wired into the instruction.
! Will show dataflow diagram with each

instruction.
n  illustrates when and where data moves

to accomplish the desired operation

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring 2012 - Colorado State University

NOT (Register)

Note: Src and Dst
could be the same register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring 2012 - Colorado State University

ADD/AND (Register) this zero means “register mode”

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring 2012 - Colorado State University

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring 2012 - Colorado State University

Using Operate Instructions

! With only ADD, AND, NOT…
n  How do we subtract?
n  How do we OR?
n  How do we copy from one register to another?
n  How do we initialize a register to zero?

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Spring 2012 - Colorado State University

Data Movement Instructions
! Load -- read data from memory to register

n  LD: PC-relative mode
n  LDR: base+offset mode
n  LDI: indirect mode

! Store -- write data from register to memory
n  ST: PC-relative mode
n  STR: base+offset mode
n  STI: indirect mode

! Load effective address -- compute address,
save in register
n  LEA: immediate mode
n  does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Spring 2012 - Colorado State University

! Want to specify address directly in the instruction
n  But an address is 16 bits, and so is an instruction!
n  After subtracting 4 bits for opcode and 3 bits for register,

we have 9 bits available for address.
! Solution:

n  Use the 9 bits as a signed offset from the current PC.

! 9 bits:
! Can form address such that:

n  Remember that PC is incremented as part of the FETCH phase;
n  This is done before the EVALUATE ADDRESS stage.

PC-Relative Addressing Mode

255offset256 +≤≤−

255PCX256PC +≤≤−

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Spring 2012 - Colorado State University

LD (PC-Relative)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Spring 2012 - Colorado State University

ST (PC-Relative)

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Spring 2012 - Colorado State University

Indirect Addressing Mode

! With PC-relative mode, can only address data
within 256 words of the instruction.
n  What about the rest of memory?

! Solution #1:
n  Read address from memory location,

then load/store to that address.
! First address is generated from PC and IR

(just like PC-relative addressing), then
content of that address is used as target for
load/store.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Spring 2012 - Colorado State University

LDI (Indirect)

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Spring 2012 - Colorado State University

STI (Indirect)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Spring 2012 - Colorado State University

Base + Offset Addressing Mode

! With PC-relative mode, can only address data
within 256 words of the instruction.
n  What about the rest of memory?

! Solution #2:
n  Use a register to generate a full 16-bit address.

! 4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are
used as a signed offset.

n  Offset is sign-extended before adding to base
register.

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Spring 2012 - Colorado State University

LDR (Base+Offset)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Spring 2012 - Colorado State University

STR (Base+Offset)

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Spring 2012 - Colorado State University

Load Effective Address

! Computes address like PC-relative (PC plus
signed offset) and stores the result into a
register.

 Note: The address is stored in the register,
not the contents of the memory location.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Spring 2012 - Colorado State University

LEA (Immediate)

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Spring 2012 - Colorado State University

Example
Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1 ← PC – 3 = x30F4

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2 ← R1 + 14 = x3102

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[PC - 5] ← R2
M[x30F4] ← x3102

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ← 0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2 ← R2 + 5 = 5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14] ← R2
M[x3102] ← 5

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1
R3 ← M[M[x30F4]]

R3 ← M[x3102]
R3 ← 5 opcode

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Spring 2012 - Colorado State University

Register Transfer Notation/Level

! Used to describe the operational behavior of digital
circuits
n  Cycle by cycle or at a more “macro” level

! R1 ← PC – 3 = x30F4
n  DstReg ← Value, using other regs or memory and ops

! Also names which control signals are on (i.e., 1)
during a cycle. By default signals not named are off

! Control signals are the critical elements, everything
else can be inferred.
n  More of this in recitation

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Spring 2012 - Colorado State University

Control Instructions
! Used to alter the sequence of instructions

(by changing the Program Counter)
! Conditional Branch

n  branch is taken if a specified condition is true
! signed offset is added to PC to yield new PC

n  else, the branch is not taken
! PC is not changed, points to the next instruction

! Unconditional Branch (or Jump)
n  always changes the PC

! TRAP
n  changes PC to the address of an OS “service routine”
n  routine will return control to the next instruction (after the

TRAP)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Spring 2012 - Colorado State University

Condition Codes

! LC-3 has three condition code registers:
 N -- negative
 Z -- zero
 P -- positive (greater than zero)

! Set by any instruction that writes a value to a
register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

! Exactly one will be set at all times
n  Based on the last instruction that altered a register

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Spring 2012 - Colorado State University

Branch Instruction

! Branch specifies one or more condition codes.
! If the set bit is specified, the branch is taken.

n  PC-relative addressing:
target address is made by adding signed offset (IR
[8:0]) to current PC.

n  Note: PC has already been incremented by FETCH
stage.

n  Note: Target must be within 256 words of BR
instruction.

! If the branch is not taken,
the next sequential instruction is executed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Spring 2012 - Colorado State University

BR (PC-Relative)

What happens if bits [11:9] are all zero? All one?

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Spring 2012 - Colorado State University

Using Branch Instructions

! Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 ← x3100
R3 ← 0

R2 ← 12

R2=0?

R4 ← M[R1]
R3 ← R3+R4
R1 ← R1+1
R2 ← R2-1

NO

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Spring 2012 - Colorado State University

Sample Program
Address Instruction Comments

x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1 ← x3100 (PC+0xFF)

x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 ← 0

x3002 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ← 0

x3003 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 R2 ← 12

x3004 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 If Z, goto x300A (PC+5)

x3005 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 Load next value to R4

x3006 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 Add to R3

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 Increment R1 (pointer)

X3008 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 Decrement R2
(counter)

x3009 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 Goto x3004 (PC-6)

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Spring 2012 - Colorado State University

JMP (Register)
! Jump is an unconditional branch -- always taken.

n  Target address is the contents of a register.
n  Allows any target address.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS270 - Spring 2012 - Colorado State University

TRAP

! Calls a service routine, identified by 8-bit “trap
vector.”

! When routine is done,
PC is set to the instruction following TRAP.
n  We’ll talk about how this works later.

vector routine

x23 input a character from the
keyboard

x21 output a character to the monitor
x25 halt the program

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33 CS270 - Spring 2012 - Colorado State University

Another Example
! Count the occurrences of a character in a file

n  Program begins at location x3000
n  Read character from keyboard
n  Load each character from a “file”

! File is a sequence of memory locations
! Starting address of file is stored in the memory location

immediately after the program
n  If file character equals input character, increment counter
n  End of file is indicated by an ASCII value: EOT (x04)
n  At the end, print the number of characters and halt

(assume there will be less than 10 occurrences of the character)
! A special character used to indicate the end of a sequence

is often called a sentinel.
n  Useful when you don’t know ahead of time how many times

to execute a loop.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34 CS270 - Spring 2012 - Colorado State University

Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35 CS270 - Spring 2012 - Colorado State University

Program (1 of 2)
Address Instruction Comments

x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ← 0 (counter)

x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 ← M[x3102] (ptr)

x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 Input to R0 (TRAP x23)

x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ← M[R3]

x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 ← R1 – 4 (EOT)

x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 If Z, goto x300E

x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 ← NOT R1

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 ← R1 + 1

X3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 ← R1 + R0

x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 If N or P, goto x300B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36 CS270 - Spring 2012 - Colorado State University

Program (2 of 2)
Address Instruction Comments

x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 ← R2 + 1

x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 ← R3 + 1

x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ← M[R3]

x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 Goto x3004

x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 ← M[x3013]

x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 ← R0 + R2

x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Print R0 (TRAP x21)

x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT (TRAP x25)

X3012 Starting Address of File

x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII x30 (‘0’)

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37 CS270 - Spring 2012 - Colorado State University

LC-3
Data Path
Revisited

Filled arrow
 = info to be processed.

Unfilled arrow
 = control signal.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

38 CS270 - Spring 2012 - Colorado State University

Data Path Components
! Global bus

n  special set of wires that carry a 16-bit signal
to many components

n  inputs to the bus are “tri-state devices”, that only place a
signal on the bus when they are enabled

n  only one (16-bit) signal should be enabled at any time
! control unit decides which signal “drives” the bus

n  any number of components can read the bus
! register only captures bus data if it is write-enabled

by the control unit
! Memory

n  Control and data registers for memory and I/O devices
n  memory: MAR, MDR (also control signal for read/write)

20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

39 CS270 - Spring 2012 - Colorado State University

Data Path Components
! ALU

n  Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

n  Output goes to bus.
! used by condition code logic, register file, memory

! Register File
n  Two read addresses (SR1, SR2), one write address

(DR)
n  Input from bus

! result of ALU operation or memory read
n  Two 16-bit outputs

! used by ALU, PC, memory address
! data for store instructions passes through ALU

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

40 CS270 - Spring 2012 - Colorado State University

Data Path Components

! PC and PCMUX
n  Three inputs to PC, controlled by PCMUX

1. PC+1 – FETCH stage
2. Address adder – BR, JMP
3. bus – TRAP (discussed later)

Ø  MAR and MARMUX
•  Two inputs to MAR, controlled by MARMUX

1. Address adder – LD/ST, LDR/STR
2. Zero-extended IR[7:0] -- TRAP (discussed later)

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

41 CS270 - Spring 2012 - Colorado State University

Data Path Components
! Condition Code Logic

n  Looks at value on bus and generates N, Z, P signals
n  Registers set only when control unit enables them (LD.CC)

! only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

! Control Unit – Finite State Machine
n  On each machine cycle, changes control signals for next

phase of instruction processing
! who drives the bus? (GatePC, GateALU, …)
! which registers are write enabled? (LD.IR, LD.REG, …)
! which operation should ALU perform? (ALUK)

n  Logic includes decoder for opcode, etc.

