Chapter 5
The LC-3

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill C¢

3
°

required for on o display.

Computing Layers

T Problems
E- Algorithms
Language

Devices

CS270 - Spring 2012 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Set Architecture

@ ISA = All of the programmer-visible
components and operations of the computer

= Mmemory organization
@ address space -- how may locations can be addressed?
@ addressibility -- how many bits per location?
= register set
@ how many? what size? how are they used?
» instruction set
@ opcodes
@ data types
@ addressing modes

@ ISA provides all information needed for someone that
wants to write a program in machine language

= or translate from a high-level language to machine language.

CS270 - Spring 2012 - Colorado State University 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Overview: Memory and Registers
o Memory
= address space: 2'% locations (16-bit addresses)
= addressability: 16 bits
@ Registers
« temporary storage, accessed in a single machine cycle
@ accessing memory takes longer than a single cycle
= eight general-purpose registers: R0 - R7
@ each 16 bits wide
@ how many bits to uniquely identify a register?
= other registers

@ not directly addressable, but used by (and affected
by) instructions

@ PC (program counter), condition codes

CS270 - Spring 2012 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Overview: Instruction Set

@ Opcodes
= 15 opcodes, 3 types of instructions

« Operate: ADD, AND, NOT
» Data movement. LD, LDI, LDR, LEA, ST, STR, STI
» Control- BR, JSR/JSRR, JMP, RTI, TRAP
= some opcodes set/clear condition codes, based on result:
oN = negative, Z = zero, P = positive (> 0)
o Data Types
= 16-bit 2’ s complement integer
@ Addressing Modes
= How is the location of an operand specified?
= non-memory addresses: immediate, register

= memory addresses: PC-relative, indirect, base+offset

CS270 - Spring 2012 - Colorado State University 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Operate Instructions

@ Only three operations: ADD, AND, NOT

@ Source and destination operands are registers
= These instructions do not reference memory.
« ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.
@ Will show dataflow diagrarm with each
instruction.

=« illustrates when and where data moves
to accomplish the desired operation

CS270 - Spring 2012 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

NOT (Reglster)

15 14 13 12 11 10 & 2 1

NOT|1001|DstISrc1111111

Register File

Dst

Src b
Note: Src and Dst
could be the same register. .

R
)

CS270 - Spring 2012 - Colorado State University

Copyright © The McGraw-Hill C Inc. ission required for on o display.

ADD/AND (Reglster)

15 14 13 12 11 10 S 1
ADD [0 0 0 1| pst | srel |o|o o| Src2|

15 14 13 12 11 10 9 7) 5 4 1
AND |o 1 0 1] bpst | srel |o|o o| Src2|
Register File
— Src2
Dst <

CS270 - Spring 2012 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ADD/AND (Immedlate)

15 14 13 12 11 10

ADD [0 0 0 1] Dstrl srecl |1| Imm5

15 14 13 12 11 10 9o 7

3 1
AND [0 1 0 1| Dst | srel |1| Trm5

Register File

Dst

Note: Immediate field is
sign-extended.

Instruction Reg
CS270 - Spring 2012 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Operate Instructions

@ With only ADD, AND, NOT...
= How do we subtract?
How do we OR?

= How do we copy from one register to another?
How do we initialize a register to zero?

CS270 - Spring 2012 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Movement Instructions

@ Load -- read data from memory to register
» LD: PC-relative mode
= LDR: base+offset mode
= LDI: indirect mode

@ Store -- write data from register to memory
» ST: PC-relative mode
» STR: base+offset mode
» STI: indirect mode

@ Load effective address -- compute address,
save in register
» LEA: immediate mode
= does not access memory

CS270 - Spring 2012 - Colorado State University 1"

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PC-Relative Addressing Mode

@ Want to specify address directly in the instruction
= But an address is 16 bits, and so is an instruction!

= After subtracting 4 bits for opcode and 3 bits for register,
we have 9 bits available for address.

@ Solution:

» Use the 9 bits as a signed offset from the current PC.
@ 9 bits: - 256 < offset < +255
@ Can form address such that: PC-256 < X <PC +255

= Remember that PC is incremented as part of the FETCH phase;
= This is done before the EVALUATE ADDRESS stage.

CS270 - Spring 2012 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

LD (PC-Relative)

15 14 13 12 11 10 ¢ 65 3 2 1 0
ID [0 0 1 0| Dpst | PCoffset?
PC Register File Memory
I
Dst
@

Sext |
@ TIrs:0]

Instruction Reg

MDR
CS270 - Spring 2012 - Colorado State University 13
Copyright © The McGraw-Hill C: Inc. required for ion or display.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ST | 0 01 1| Src | PCoffset9
PC Register File Memory
Src
@
©)
Instruction Reg
MAR)
MDR
CS270 - Spring 2012 - Colorado State University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Indirect Addressing Mode

@ With PC-relative mode, can only address data
within 256 words of the instruction.

= What about the rest of memory?

@ Solution #1:

» Read address from memory location,
then load/store to that address.

@ First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for

load/store.
CS270 - Spring 2012 - Colorado State University 15
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
IDI | 101 0| Dst | PCoffset9
PC Register File Memory
Dst
©
(®)
Sext |
@ TirB:0] x
+ —
Instruction Reg 2
L v,
MAR |(9 ®
ﬁiH
MDR ©
CS270 - Spring 2012 - Colorado State University 16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

STI (Ll‘ngiirject:t)

15 14 13 12 11 10 ¢ 5 5 4 3 2 1
STI (1 0 1 1| Src | PCoffset9
PC Register File Memory
[] -
©
©
Sext |
@ Tirs:0] 7
+ R
— (6
Instruction Reg (2
L ¥,
MAR [& @
—@
MDR ()
CS270 - Spring 2012 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Base + Offset Addressing Mode

@ With PC-relative mode, can only address data
within 256 words of the instruction.
= What about the rest of memory?

@ Solution #2:
» Use a register to generate a full 16-bit address.
@ 4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are
used as a signed offset.
=« Offset is sign-extended before adding to base
register.

CS270 - Spring 2012 - Colorado State University 18

Copyright © The McGraw-Hill Companies, Inc.

LDR (Base+0ffset)

required for

o or display.

15 14 13 12 11 10 1 0
LDR |0 11 0| Dst | Base | offsetG
Register File Memory
Dst
&) Base
() —
— Sext —
IR[5:0]
Instruction Reg
MDR
CS270 - Spring 2012 - Colorado State University 19
Copyright © The McGraw-Hill C: Inc. required for ion or display.
STR (Base+Offset)
15 14 13 12 11 10 & 1 0
STR |0 11 1| Src | Basel offset6
Register File Memory
Src
©) Base
[€) J
- Sext —
IR[5:0]
Instruction Reg
CS270 - Spring 2012 - Colorado State University 20

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Load Effective Address

@ Computes address like PC-relative (PC plus
signed offset) and stores the result into a
register.

Note: The address is stored in the register,
not the contents of the memory location.

CS270 - Spring 2012 - Colorado State University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LEA (Imrpe:dirate)

15 14 13 12 11 10 9 8 65 3 2 1
LEA [1 1 1 o] Dst | PCoffset
PC Register File
[1 -
1)
\ Sext
@ TIrE:0]
"j
Instruction Reg ®
CS270 - Spring 2012 - Colorado State University 22

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

Address Instruction Comments
X30F6 1110001111111101 R1 « PC- 3 = x30F4
X30F7 0001010001101110 R2 — R1 + 14 = x3102
X30F8 0011010111111011 T
X30F9 0101010010100000 R2 0
X30FA 0001010010100101 R2+R2+5=5
X30FB 0111010001001 11 S
R3 « M[M[x30F4]]
X30FC 1010011111110111 R3 « M[x3102]
opcode R3 <5
€S270 - Spring 2012 - Colorado State University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Register Transfer Notation/Level

@ Used to describe the operational behavior of digital
circuits
= Cycle by cycle or at a more “macro” level
oR1 < PC - 3 = x30F4
« DstReg < Value, using other regs or memory and ops
@ Also names which control signals are on (i.e., 1)
during a cycle. By default signals not named are off
@ Control signals are the critical elements, everything
else can be inferred.
=« More of this in recitation

CS270 - Spring 2012 - Colorado State University 24

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Instructions

@ Used to alter the sequence of instructions
(by changing the Program Counter)
@ Conditional Branch
= branch is taken if a specified condition is true
@ signed offset is added to PC to yield new PC
« else, the branch is not taken
@ PC is not changed, points to the next instruction
@ Unconditional Branch (or Jump)
= always changes the PC
o TRAP
= changes PC to the address of an OS “service routine”

= routine will return control to the next instruction (after the
TRAP)

CS270 - Spring 2012 - Colorado State University 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Condition Codes

@ LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

@ Set by any instruction that writes a value to a
register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

@ Exactly one will be set at all times
=« Based on the last instruction that altered a register

CS270 - Spring 2012 - Colorado State University 26

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Branch Instruction

@ Branch specifies one or more condition codes.
@ If the set bit is specified, the branch is taken.

=« PC-relative addressing:
target address is made by adding signed offset (IR
[8:0]) to current PC.

= Note: PC has already been incremented by FETCH
stage.

= Note: Target must be within 256 words of BR
instruction.

@ If the branch is not taken,
the next sequential instruction is executed.

CS270 - Spring 2012 - Colorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BR (PC Relatlve)

15 14 13 12 11 10 & / 1

BR|0 00 0|n|z|p| PCoffset9

PC

(@)

What happens if bits [11:9] are all zero? All one?

CS270 - Spring 2012 - Colorado State University 28

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Branch Instructions

@ Compute sum of 12 integers.

Numbers start at location x3100. Program starts at location x3000.

R1 < x3100
R3<0
R2 < 12
R4 < M[R1]
R3 < R3+R4
NO R1 < R1+1
R2 < R2-1
YES ;

CS270 - Spring 2012 - Colorado State University

29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sample Program

Address Instruction Comments
x3000 1110001011111111 R1 <« x3100 (PC+0xFF)
x3001 0101011011100000 R3 -0
x3002 0101010010100000 R2 <0
x3003 0001010010101100 R2 « 12
x3004 0000010000000101 If Z, goto x300A (PC+5)
x3005 0110100001000000 Load next value to R4
x3006 0001011011000001 Add to R3
x3007 0001001001100001 Increment R1 (pointer)
X3008 0001010010111111 e
x3009 0000111111111010 Goto x3004 (PC-6)

CS270 - Spring 2012 - Colorado State University

30

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JMP (Register)

@ Jump is an unconditional branch -- always taken.

« Target address is the contents of a register.

« Allows any target address.
15 14 13 12 11 10 & 7 4

3 2 1 0
JMP 1 1oo\ooo\Base]oooooo

PC Register File

I ey

Base

CS270 - Spring 2012 - Colorado State University

31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TRAP

15 14 13 12 11 10 9 5 4 3 2 1

TRAP |1 11 1|O 00 O| trapvect8 I

@ Calls a service routine, identified by 8-bit “trap
vector.”

vector | routine

input a character from the

e keyboard

x21 |output a character to the monitor
x25 | halt the program

@ When routine is done,
PC is set to the instruction following TRAP.

« We’ll talk about how this works later.

CS270 - Spring 2012 - Colorado State University

32

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Example

@ Count the occurrences of a character in a file
= Program begins at location x3000
= Read character from keyboard
= Load each character from a “file”

o File is a sequence of memory locations
@ Starting address of file is stored in the memory location
immediately after the program
If file character equals input character, increment counter
= End of file is indicated by an ASCII value: EOT (x04)

= At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)
@ A special character used to indicate the end of a sequence
is often called a sentinel.

= Useful when you don’t know ahead of time how many times

to execute a loop.
CS270 - Spring 2012 - Colorado State University 33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Flow Chart

Count =0

(R2=0) Convert count to

ASCII character
(RO =x30, RO = R2 + R0)

A

Ptr = 1st file character
(R3 = M[x3012])

Print count
(TRAP x21)

Match?
(R1 7= R0)

Input char
from keybd
(TRAP x23)

HALT
(TRAP x25)

Incr Count

Load char from file (R2=R2+1)

(R1 = M[R3]) ‘

L I

Load next char from file
(R3=R3 + 1, R1 = M[R3])

CS270 - Spring 2012 - Colorado State University 34

17

Copyright © The McGraw-Hill Companies, Inc. ission required for

Program (1 of 2)

or display.

Address Instruction Comments
x3000 0101010010100000 R2 <« 0 (counter)
x3001 0010011000010000 R3 — M[x3102] (ptr)
x3002 111100000010001 1 Input to RO (TRAP x23)
x3003 0110001011000000 R1 < M[R3]
x3004 0001100001111100 R4 — R1- 4 (EOT)
x3005 0000010000001000 If Z, goto x300E
x3006 1001001001111111 R1 < NOTR1
x3007 0001001001100001 R1«<R1+1
X3008 0001001001000000 R1<R1+RO
x3009 0000101000000001 If N or P, goto x3008
CS270 - Spring 2012 - Colorado State University 35
Program (2 of 2)
Address Instruction Comments
x300A 000101001010000 1 R2 «—R2+1
x300B 0001011011100001 R3—R3+1
x300C 0110001011000000 R1 «— M[R3]
x300D 0000111111110110 Goto x3004
x300E 0010000000000100 RO « M[x3013]
x300F 0001000000000010 RO «— RO + R2
x3010 111100000010000 1 Print RO (TRAP x21)
x3011 1111000000100101 HALT (TRAP x25)
X3012 Starting Address of File
x3013 0000000000110000 ASCII x30(0’)

CS270 - Spring 2012 - Colorado State University

36

1R

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

GatsMARMUX—/\ /\-GatePC

| ﬁ
~<7/MARMU><\ H’{ PCc \

Y ke REe
W LS
toRec—o]
(B smero] 2 SULLY o
7ol 5 A A
N)
—
%
: o
e 46
100) !
H %/—
Filled arrow =y =
= info to be processed. B rsexT] #
i . [»
Unfilled arrow P rsexr B O
: A
= control signal. conmmoL| , AK AL
m»:}; L
16 ILOGIC
GateALU
Iﬁ% ;15 ;m
LO.MDR —={ MDR | MAR [<— LD.MAR
A
1 |
.
| weworr [+ weuT outeur
| [
L}
wemen,
CS270 - Spring 2012 - Colorado State University 37

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components
9 Global bus

= special set of wires that carry a 16-bit signal
to many components

= inputs to the bus are “tri-state devices”, that only place a
signal on the bus when they are enabled

= only one (16-bit) signal should be enabled at any time
@ control unit decides which signal “drives” the bus

= any number of components can read the bus
@ register only captures bus data if it is write-enabled

by the control unit
o Memory
= Control and data registers for memory and I/O devices
= memory: MAR, MDR (also control signal for read/write)

CS270 - Spring 2012 - Colorado State University 38

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components
o ALU

= Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

« Output goes to bus.
@ used by condition code logic, register file, memory

o Register File
= Two read addresses (SR1, SR2), one write address
(DR)

= Input from bus
@ result of ALU operation or memory read

= Two 16-bit outputs
@ used by ALU, PC, memory address
@ data for store instructions passes through ALU

CS270 - Spring 2012 - Colorado State University 39

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components

@ PC and PCMUX
= Three inputs to PC, controlled by PCMUX
1.PC+1 — FETCH stage
2.Address adder — BR, JMP
3.bus — TRAP (discussed later)

» MAR and MARMUX
- Two inputs to MAR, controlled by MARMUX
1.Address adder — LD/ST, LDR/STR
2.Zero-extended IR[7:0] -- TRAP (discussed later)

CS270 - Spring 2012 - Colorado State University 40

20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components

@ Condition Code Logic
« Looks at value on bus and generates N, Z, P signals
= Registers set only when control unit enables them (LD.CC)
@ only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)
@ Control Unit - Finite State Machine

= On each machine cycle, changes control signals for next
phase of instruction processing

@ who drives the bus? (GatePC, GateALU, ...)
@ which registers are write enabled? (LD.IR, LD.REG, ...)
@ which operation should ALU perform? (ALUK)

= Logic includes decoder for opcode, etc.

CS270 - Spring 2012 - Colorado State University 41

21

