Chapter 10
And, Finally...
The Stack

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Stack: An Abstract Data Type

@ An important abstraction that you will encounter
in many applications.

@ The fundamental model for execution of C, Java,
Fortran, and many other languages.

@ We will describe three uses of the stack:
s« Interrupt-Driven I/O
* The rest of the story...
« Evaluating arithmetic expressions
 Store intermediate results on stack instead of in registers

« Data type conversion
+ 2’ s comp binary to ASCII strings

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Stacks

@ A LIFO (last-in first-out) storage structure.
= The first thing you put in is the last thing you take out.
= The last thing you put in is the first thing you take out.

@ This means of access is what defines a stack,
not the specific implementation.

@ Two main operations:

PUSH: add an item to the stack
POP: remove an item from the stack

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

A Physical Stack

@ Coin rest in the arm of an automobile

AN\

AN\

Initial State After After Three After
One Push More Pushes One Pop

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Hardware Implementation

@ Data items move between registers

Empty: | Yes Empty: Empty: Empty:

/111l |+<TOP #18 +—TOP #12 +—TOP #31 < TOP
111 111 #5 #18
1111 111 #31 1111
111 111 #18 11111
1111 1111 111111 11111
Initial State After After Three After
One Push More Pushes Two Pops
CS270 - Fall 2011 - Colorado State University 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Software Implementation

@ Data items don't move in memory,
just our idea about where the TOP of the stack

119111 111111 #12 |<ToP [#12

11 111 #5 #5

111 111 #31 #31 < TOP

11 #18 |«<TOP #18 #18

[111]] |«<TOP | [[[]]] 1111 1111
R6 R6 R6 R6
Initial State After After Three After

One Push More Pushes Two Pops

By convention, R6 holds the Top of Stack (TOS) pointer.

CS270 - Fall 2011 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Push and Pop Code

@ For our implementation, stack grows downward
(when item added, TOS moves closer to 0)

PUSH Rx

ADD R6, R6, #-1 ; decrement stack pointer
STR Rx, R6, #0 ; store data (Rx) to TOS

POP Rx

ILDR Rx, R6, #0 ; load data (Rx) from TOS
ADD R6, R6, #1 ; increment stack pointer

CS270 - Fall 2011 - Colorado State University 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pop with Underflow Detection
@ If we try to pop too many items off the stack,
an underflow condition occurs.
= Check for underflow before removing data.

= Return status code in R5 (0 for success, 1 for underflow)

POP LD R1l, EMPTY ; EMPTY = -x4000
ADD R2, R6, Rl ; Compare stack pointer
BRz FAIL ; with x3FFF
LDR RO, R6, #0
ADD R6, R6, #1
AND R5, R5, #0
RET

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
ADD R5, R5, #1
RET

EMPTY .FILL xC000

CS270 - Fall 2011 - Colorado State University 8

SUCCESS: RS = 0

e

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Push with Overflow Detection
@ If we try to push too many items onto the stack,
an overflow condition occurs.
=« Check for overflow before adding data.
= Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1l, MAX ; MAX = -x3FFB
ADD R2, R6, Rl ; Compare stack pointer
BRz FAIL ; with x3FFB

ADD R6, R6, #-1
STR RO, R6, #0
AND R5, R5, #0 ; SUCCESS: R5 = 0
RET

FAIL AND R5, R5, #0 ; FAIL: RS = 1
ADD R5, R5, #1
RET

MAX .FILL xCO005

CS270 - Fall 2011 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interrupt-Driven |I/O (Part 2)
@ Interrupts were introduced in Chapter 8.
1. External device signals need to be serviced.
». Processor saves state and starts service routine.

s When finished, processor restores state and
resumes program.

Interrupt is an unscripted subroutine call,
triggered by an external event.

« Chapter 8 didn’ t explain how (2) and (3) occur,
because it involves a stack.

« Now, we’ re ready...

CS270 - Fall 2011 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processor State
@ What state is needed to completely capture the
state of a running process?

o Processor Status Register
= Privilege [15], Priority Level [10:8], Condition Codes [2:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P \ PL N\ Z \ P
@ Program Counter

= Pointer to next instruction to be executed.

@ Registers
= Temporary process state that’ s not stored in memory.

CS270 - Fall 2011 - Colorado State University "

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Where to Save Processor State?

o Can’ t use registers.

= Programmer doesn’ t know when interrupt might occur,
so she can’ t prepare by saving critical registers.

=« When resuming, need to restore state exactly as it was.

@ Memory allocated by service routine?

= Must save state before invoking routine,
so we wouldn’ t know where.

« Also, interrupts may be nested — that is, an interrupt
service routine might also get interrupted!
9 Use a stack!
= Location of stack “hard-wired”.
=« Push state to save, pop to restore.

CS270 - Fall 2011 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Supervisor Stack

@ A special region of memory used as the stack
for interrupt service routines.

= Initial Supervisor Stack Pointer (SSP) stored in
Saved.SSP.

= Another register for storing User Stack Pointer (USP):
Saved.USP.

@ Want to use R6 as stack pointer.
= So that our PUSH/POP routines still work.
@ When switching from User mode to Supervisor

mode (as result of interrupt), save R6 to
Saved.USP.

CS270 - Fall 2011 - Colorado State University 13

o0 B w

© N

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Invoking the Service Routine (Details)

. If Priv =1 (user),

Saved.USP = R6, then R6 = Saved.SSP.

Push PSR and PC to Supervisor Stack.

Set PSR[15] = 0 (supervisor mode).

Set PSR[10:8] = priority of interrupt being serviced.
Set PSR[2:0] = 0.

Set MAR = x01vyy, where vy = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).
Load memory location (M[x01yv]) into MDR.

Set PC = MDR; now first instruction of ISR will be fetched.
Note: This all happens between

the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

CS270 - Fall 2011 - Colorado State University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Returning from Interrupt

@ Special instruction — RTI — that restores state.
15 14 13 12 11 10 9 8 7 &

5 4 3 2 1 0
RTI 1 000/000000000O00O00O

1. Pop PC from supervisor stack:
(PC = M[R6]; R6 =R6 + 1)

2. Pop PSR from supervisor stack:
(PSR = M[R6]; R6 = R6 + 1)

3. If going back to user mode, need to restore User Stack Pointer:
(if PSR[15] = 1, R6 = Saved.USP)

@ RTl is a privileged instruction.
= Can only be executed in Supervisor Mode.

« If executed in User Mode, causes an exception.
(More about that later.)

CS270 - Fall 2011 - Colorado State University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example (1)

Program A

Saved.SSP

1111
11
111
111
= 1

Pc| x3006 |

x3006| ADD

Executing ADD at location x3006 when Device B interrupts.

CS270 - Fall 2011 - Colorado State University 16

R6—

111171

11117

x3007

PSR for A

111171

Pc| x6200 |

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

x3006

Example (2)

Program A

ADD

X6

x6210

ISR for
Device B

>

RTI

CS270 - Fall 2011 - Colorado State University 17
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Example (3)
Program A ISR for
Device B
X6 —>
1111
6202 AND
1111 «3006| ADD
R6—| x3007
PSR for A
x6210 RT T
11111
PC| x6203
Executing AND at x6202 when Device C interrupts.
CS270 - Fall 2011 - Colorado State University 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example (4)

Program A ISR for
Device B
x6 —>
R6—| x6203
6202 AND
PSR for B
= x3006 ADD ISR for
x3007 Device C
e x6210| RT I x6300[>
11
PC
x6315(RTI
Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).
CS270 - Fall 2011 - Colorado State University 19
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Example (5)
Program A ISR for
Device B
X6 —>
x6203
6202 AND
PSR for B
= x3006| ADD \ ISR for
R6— x3007 Device C
PSR for A «6210| RTT 6300~
11
PC| x6203
x6315| RTI
Execute RTI at x6315; pop PC and PSR from stack.
CS270 - Fall 2011 - Colorado State University 20

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example (6)

Program A ISR for
Saved.SSP Device B
X6 —>
x6203
6202 AND
PSR for B
- x3006] ADD \ ISR for
x3007 h Device C
PSR for A S3To| RTT 6300~
| 1111
PC| x3007
x63151 RT I

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

CS270 - Fall 2011 - Colorado State University

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exception: Internal Interrupt

@ When something unexpected happens

inside the processor, it may cause an exception.

@ Examples:
= Privileged operation (e.g., RTI in user mode)
« Executing an illegal opcode
« Divide by zero
= Accessing an illegal address (e.g., protected system
memory)
@ Handled just like an interrupt
= Vector is determined internally by type of exception
« Priority is the same as running program

CS270 - Fall 2011 - Colorado State University

22

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Arithmetic Using a Stack
@ Instead of registers, some ISA's use a stack for
source/destination ops (zero-address machine).

=« Example: ADD instruction pops two numbers from the
stack, adds them, and pushes the result to the stack.

Evaluating (A+B)-(C+D) using a stack:

(1) push A
(2) push B 5
(3) ADD Wha{ use a stgck.

* Limited registers.
(4) DUSh C » Convenient calling convention
(5) push D for subroutines.
(6) ADD « Algorithm naturally expressed
(7) MULTIPLY using FIFO data structure.
(8) pop Result

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: OpAdd
@ POP two values, ADD, then PUSH result.

POP
No

Put back first Put back both PUSH

| '

CS270 - Fall 2011 - Colorado State University 24

12

Copyright © The McGraw-Hill Companies,

Inc.

Permission required for reproduction or display.

Example: OpAdd

OpAdd JSR POP ;
ADD R5,R5,#0 ;
BRp Exit ;
ADD R1,RO,#0 ;
JSR POP :
ADD R5,R5,#0 ;
BRp Restorel ;
ADD RO,RO,R1 ;
JSR RangeCheck
BRp Restore2 ;
JSR PUSH 3
RET

Restore2 ADD R6,R6,#-1
Restorel ADD R6,R6,#-1

Exit RET

CS270 - Fall 2011 - Colorado State University

Get first operand.
Check for POP success.

; If error, bail.

Make room for second.
Get second operand.

; Check for POP success.
; If err, restore & bail.
; Compute sum.

; Check size.

If err, restore & bail.

Push sum onto stack.

undo first POP
undo second POP

s
14
*
14

25

Copyright © The McGraw-Hill Companies,

. Permission required for reproduction or display.

Data Type Conversion

@ Keyboard input routines read ASCII characters,
not binary values, output routines write ASCII.

@ Consider this program:
TRAP x23
ADD R1, RO, #0
TRAP x23
ADD RO, R1, RO
TRAP x21
TRAP x25

e

e

; input from keybd

move to Rl

; input from keybd

add two inputs

; display result
; HALT

@ User inputs 2 and 3 -- what happens?

« Result displayed: e

= Why? ASCII '2' (x32) + ASCII '3' (x33) = ASCII 'e' (x65)

CS270 - Fall 2011 - Colorado State University 26

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ASCII to Binary

@ Useful to deal with mult-digit decimal numbers
@ Assume we've read three ASCII =0 |
digits (e.g., "259") into memory. 35 |5
x39 |'9"
@ How do we convert this to a number we can use?
= Convert first character to digit and multiply by 100.
= Convert second character to digit and multiply by 10.

= Convert third character to digit.
« Add the three digits together.

CS270 - Fall 2011 - Colorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Multiplication via a Lookup Table

@ How can we multiply a number by 1007?
= One approach: Add number to itself 100 times.
= Another approach: Add 100 to itself <number> times.
(Better if number < 100.)
o Since we have a small range of numbers (0-9),
use number as an index into a lookup table.
Entry 0: 0x100=0
Entry 1: 1 x 100 = 100
Entry 2: 2 x 100 = 200
Entry 3: 3 x 100 = 300
etc.

CS270 - Fall 2011 - Colorado State University 28

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code for Lookup Table
; multiply RO by 100, using lookup table

14

LEA Rl, LookuplO0 ; Rl = table base

ADD R1l, R1, RO ; add index (RO)
LDR RO, R1l, #0 ; load from M[R1]
Lookupl00 .FILL 0 ; entry 0
.FILL 100 ; entxy 1
.FILL 200 ; entry 2
.FILL 300 ; entry 3
.FILL 400 ; entry 4
.FILL 500 ; entry 5
.FILL 600 ; entry 6
.FILL 700 ; entry 7
.FILL 800 ; entry 8
.FILL 900 ; entry 9
C

CS270 - Fall 2011 - Colorado State University 29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Complete Conversion Routine (1 of 3)

; Three-digit buffer at ASCIIBUF.
; Rl tells how many digits to convert.
; Put resulting decimal number in RO.

ASCIItoBinary

AND RO, RO, #0 ; clear result
ADD R1, R1, #0 ; test # digits
BRz DoneAtoB ; done if no digits

LD R3, NegZero ; R3 = -230

LEA R2, ASCIIBUF

ADD R2, R2, R1

ADD R2, R2, #-1 ; points to ones digit

LDR R4, R2, #0 ; load digit
ADD R4, R4, R3 ; convert to number
ADD RO, RO, R4 ; add 1's

CS270 - Fall 2011 - Colorado State University 30

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conversion Routine (2 of 3)

ADD R1l, R1l, #-1
BRz DoneAtoB
ADD R2, R2, #-1

one less digit
done if zero
points to tens digit

e W wo

LDR R4, R2, #0 load digit

ADD R4, R4, R3 convert to number

LEA R5, LookuplO ; multiply by 10

ADD R5, R5, R4

LDR R4, R5, #0

ADD RO, RO, R4 ; adds 10’s

ADD R1, R1l, #-1 one less digit

BRz DoneAtoB done if =zero

ADD R2, R2, #-1 points to hundreds digit

e weo

e weo

-

CS270 - Fall 2011 - Colorado State University 31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conversion Routine (3 of 3)

ILDR R4, R2, #0

ADD R4, R4, R3

LEA R5, Lookupl00

ADD R5, R5, R4

LDR R4, R5, #0

ADD RO, RO, R4 ; adds 100's
Done RET

NegZero .FILL xFFDO ; =0x30
ASCIIBUF .BLKW 4
Lookupl0 .FILL O

.FILL 10

load digit
convert to number
multiply by 100

e Vo wo

.

Lookupl00 .FILL O
.FILL 100

CS270 - Fall 2011 - Colorado State University 32

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Binary to ASCII Conversion

@ Converting a 2's complement binary value to
a three-digit decimal number

= Resulting characters can be output using OUT

@ Instead of multiplying, we need to divide by 100
to get hundreds digit.
= Why wouldn't we use a lookup table for this problem?
= Subtract 100 repeatedly from number to divide.

@ First, check whether number is negative.

« Write sign character (+ or -) to buffer and make
positive.

CS270 - Fall 2011 - Colorado State University 33

17

