
1

Chapter 10
And, Finally...

The Stack

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall 2011 - Colorado State University

Stack: An Abstract Data Type
! An important abstraction that you will encounter

in many applications.
! The fundamental model for execution of C, Java,

Fortran, and many other languages.
! We will describe three uses of the stack:

n  Interrupt-Driven I/O
•  The rest of the story…

n  Evaluating arithmetic expressions
•  Store intermediate results on stack instead of in registers

n  Data type conversion
•  2’s comp binary to ASCII strings

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall 2011 - Colorado State University

Stacks

! A LIFO (last-in first-out) storage structure.
n  The first thing you put in is the last thing you take out.
n  The last thing you put in is the first thing you take out.

! This means of access is what defines a stack,
not the specific implementation.

! Two main operations:

 PUSH: add an item to the stack
 POP: remove an item from the stack

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall 2011 - Colorado State University

A Physical Stack

! Coin rest in the arm of an automobile

! First quarter out is the last quarter in.

1995 1996
1998
1982
1995

1998
1982
1995

Initial State After
One Push

After Three
More Pushes

After
One Pop

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall 2011 - Colorado State University

A Hardware Implementation

! Data items move between registers

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

Yes Empty:

TOP #18
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

No Empty:

TOP #12
#5

#31
#18

/ / / / / /

No Empty:

TOP #31
#18

/ / / / / /
/ / / / / /
/ / / / / /

No Empty:

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall 2011 - Colorado State University

A Software Implementation

! Data items don't move in memory,
just our idea about where the TOP of the stack
is. / / / / / /

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / / TOP

/ / / / / /
/ / / / / /
/ / / / / /

#18
/ / / / / /

TOP

#12
#5

#31
#18

/ / / / / /

TOP #12
#5

#31
#18

/ / / / / /

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x4000 x3FFF x3FFC x3FFE R6 R6 R6 R6

By convention, R6 holds the Top of Stack (TOS) pointer.

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall 2011 - Colorado State University

Basic Push and Pop Code

! For our implementation, stack grows downward
(when item added, TOS moves closer to 0)

PUSH Rx
 ADD R6, R6, #-1 ; decrement stack pointer
 STR Rx, R6, #0 ; store data (Rx) to TOS

POP Rx
 LDR Rx, R6, #0 ; load data (Rx) from TOS
 ADD R6, R6, #1 ; increment stack pointer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall 2011 - Colorado State University

Pop with Underflow Detection
! If we try to pop too many items off the stack,

an underflow condition occurs.
n  Check for underflow before removing data.
n  Return status code in R5 (0 for success, 1 for underflow)

POP LD R1, EMPTY ; EMPTY = -x4000
 ADD R2, R6, R1 ; Compare stack pointer
 BRz FAIL ; with x3FFF
 LDR R0, R6, #0
 ADD R6, R6, #1
 AND R5, R5, #0 ; SUCCESS: R5 = 0
 RET

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
 ADD R5, R5, #1
 RET

EMPTY .FILL xC000

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall 2011 - Colorado State University

Push with Overflow Detection
! If we try to push too many items onto the stack,

an overflow condition occurs.
n  Check for overflow before adding data.
n  Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1, MAX ; MAX = -x3FFB
 ADD R2, R6, R1 ; Compare stack pointer
 BRz FAIL ; with x3FFB

 ADD R6, R6, #-1
 STR R0, R6, #0
 AND R5, R5, #0 ; SUCCESS: R5 = 0
 RET

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
 ADD R5, R5, #1
 RET

MAX .FILL xC005

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall 2011 - Colorado State University

Interrupt-Driven I/O (Part 2)
! Interrupts were introduced in Chapter 8.

1.  External device signals need to be serviced.
2.  Processor saves state and starts service routine.
3.  When finished, processor restores state and

resumes program.

•  Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack.

•  Now, we’re ready…

Interrupt is an unscripted subroutine call,
triggered by an external event.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall 2011 - Colorado State University

Processor State
! What state is needed to completely capture the

state of a running process?
! Processor Status Register

n  Privilege [15], Priority Level [10:8], Condition Codes [2:0]

! Program Counter
n  Pointer to next instruction to be executed.

! Registers
n  Temporary process state that’s not stored in memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall 2011 - Colorado State University

Where to Save Processor State?
! Can’t use registers.

n  Programmer doesn’t know when interrupt might occur,
so she can’t prepare by saving critical registers.

n  When resuming, need to restore state exactly as it was.

! Memory allocated by service routine?
n  Must save state before invoking routine,

so we wouldn’t know where.
n  Also, interrupts may be nested – that is, an interrupt

service routine might also get interrupted!
! Use a stack!

n  Location of stack “hard-wired”.
n  Push state to save, pop to restore.

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall 2011 - Colorado State University

Supervisor Stack

! A special region of memory used as the stack
for interrupt service routines.
n  Initial Supervisor Stack Pointer (SSP) stored in

Saved.SSP.
n  Another register for storing User Stack Pointer (USP):

Saved.USP.
! Want to use R6 as stack pointer.

n  So that our PUSH/POP routines still work.
! When switching from User mode to Supervisor

mode (as result of interrupt), save R6 to
Saved.USP.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall 2011 - Colorado State University

Invoking the Service Routine (Details)
1.  If Priv = 1 (user),

Saved.USP = R6, then R6 = Saved.SSP.
2.  Push PSR and PC to Supervisor Stack.
3.  Set PSR[15] = 0 (supervisor mode).
4.  Set PSR[10:8] = priority of interrupt being serviced.
5.  Set PSR[2:0] = 0.
6.  Set MAR = x01vv, where vv = 8-bit interrupt vector

provided by interrupting device (e.g., keyboard = x80).
7.  Load memory location (M[x01vv]) into MDR.
8.  Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall 2011 - Colorado State University

Returning from Interrupt
! Special instruction – RTI – that restores state.

1.  Pop PC from supervisor stack:

 (PC = M[R6]; R6 = R6 + 1)
2.  Pop PSR from supervisor stack:

 (PSR = M[R6]; R6 = R6 + 1)
3.  If going back to user mode, need to restore User Stack Pointer:
 (if PSR[15] = 1, R6 = Saved.USP)

! RTI is a privileged instruction.
n  Can only be executed in Supervisor Mode.
n  If executed in User Mode, causes an exception.

(More about that later.)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall 2011 - Colorado State University

Example (1)

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

x3006 PC

Program A

ADD x3006

Executing ADD at location x3006 when Device B interrupts.

Saved.SSP

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall 2011 - Colorado State University

Example (2)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6200 PC

R6

Program A

ADD x3006

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

x6200

ISR for
Device B

x6210 RTI

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall 2011 - Colorado State University

Example (3)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6203 PC

R6

Program A

ADD x3006

Executing AND at x6202 when Device C interrupts.

x6200

ISR for
Device B

AND x6202

x6210 RTI

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall 2011 - Colorado State University

Example (4)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6300 PC

R6

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

x6300

x6315 RTI

x6210 RTI

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall 2011 - Colorado State University

Example (5)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6203 PC

R6

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Execute RTI at x6315; pop PC and PSR from stack.

x6300

x6315 RTI

x6210 RTI

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall 2011 - Colorado State University

Example (6)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x3007 PC

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

x6300

x6315 RTI

x6210 RTI

Saved.SSP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall 2011 - Colorado State University

Exception: Internal Interrupt

! When something unexpected happens
inside the processor, it may cause an exception.

! Examples:
n  Privileged operation (e.g., RTI in user mode)
n  Executing an illegal opcode
n  Divide by zero
n  Accessing an illegal address (e.g., protected system

memory)
! Handled just like an interrupt

n  Vector is determined internally by type of exception
n  Priority is the same as running program

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall 2011 - Colorado State University

Arithmetic Using a Stack
! Instead of registers, some ISA's use a stack for

source/destination ops (zero-address machine).
n  Example: ADD instruction pops two numbers from the

stack, adds them, and pushes the result to the stack.
Evaluating (A+B)·(C+D) using a stack:

 (1) push A
 (2) push B
 (3) ADD
 (4) push C
 (5) push D
 (6) ADD
 (7) MULTIPLY
 (8) pop Result

Why use a stack?
•  Limited registers.
• Convenient calling convention

for subroutines.
• Algorithm naturally expressed

using FIFO data structure.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall 2011 - Colorado State University

Example: OpAdd
! POP two values, ADD, then PUSH result.

START

POP POP

OK? OK?

ADD

Range
OK?

PUSH

RETURN

Put back bothPut back first

Yes

No No No

Yes Yes

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall 2011 - Colorado State University

Example: OpAdd
OpAdd JSR POP ; Get first operand.
 ADD R5,R5,#0 ; Check for POP success.
 BRp Exit ; If error, bail.
 ADD R1,R0,#0 ; Make room for second.
 JSR POP ; Get second operand.
 ADD R5,R5,#0 ; Check for POP success.
 BRp Restore1 ; If err, restore & bail.
 ADD R0,R0,R1 ; Compute sum.
 JSR RangeCheck ; Check size.
 BRp Restore2 ; If err, restore & bail.
 JSR PUSH ; Push sum onto stack.
 RET
Restore2 ADD R6,R6,#-1 ; undo first POP
Restore1 ADD R6,R6,#-1 ; undo second POP
Exit RET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall 2011 - Colorado State University

Data Type Conversion
! Keyboard input routines read ASCII characters,

not binary values, output routines write ASCII.
! Consider this program:
 TRAP x23 ; input from keybd
 ADD R1, R0, #0 ; move to R1
 TRAP x23 ; input from keybd
 ADD R0, R1, R0 ; add two inputs
 TRAP x21 ; display result
 TRAP x25 ; HALT

! User inputs 2 and 3 -- what happens?
n  Result displayed: e
n  Why? ASCII '2' (x32) + ASCII '3' (x33) = ASCII 'e' (x65)

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall 2011 - Colorado State University

ASCII to Binary

! Useful to deal with mult-digit decimal numbers
! Assume we've read three ASCII

digits (e.g., "259") into memory.

! How do we convert this to a number we can use?
n  Convert first character to digit and multiply by 100.
n  Convert second character to digit and multiply by 10.
n  Convert third character to digit.
n  Add the three digits together.

x32
x35
x39

'2'
'5'
'9'

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall 2011 - Colorado State University

Multiplication via a Lookup Table

! How can we multiply a number by 100?
n  One approach: Add number to itself 100 times.
n  Another approach: Add 100 to itself <number> times.

(Better if number < 100.)
! Since we have a small range of numbers (0-9),

use number as an index into a lookup table.
 Entry 0: 0 x 100 = 0
 Entry 1: 1 x 100 = 100
 Entry 2: 2 x 100 = 200
 Entry 3: 3 x 100 = 300
 etc.

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Fall 2011 - Colorado State University

Code for Lookup Table
; multiply R0 by 100, using lookup table
;
 LEA R1, Lookup100 ; R1 = table base
 ADD R1, R1, R0 ; add index (R0)
 LDR R0, R1, #0 ; load from M[R1]
 ...

Lookup100 .FILL 0 ; entry 0
 .FILL 100 ; entry 1
 .FILL 200 ; entry 2
 .FILL 300 ; entry 3
 .FILL 400 ; entry 4
 .FILL 500 ; entry 5
 .FILL 600 ; entry 6
 .FILL 700 ; entry 7
 .FILL 800 ; entry 8
 .FILL 900 ; entry 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Fall 2011 - Colorado State University

Complete Conversion Routine (1 of 3)
; Three-digit buffer at ASCIIBUF.
; R1 tells how many digits to convert.
; Put resulting decimal number in R0.

ASCIItoBinary

 AND R0, R0, #0 ; clear result
 ADD R1, R1, #0 ; test # digits
 BRz DoneAtoB ; done if no digits

 LD R3, NegZero ; R3 = -x30
 LEA R2, ASCIIBUF
 ADD R2, R2, R1
 ADD R2, R2, #-1 ; points to ones digit

 LDR R4, R2, #0 ; load digit
 ADD R4, R4, R3 ; convert to number
 ADD R0, R0, R4 ; add 1’s

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Fall 2011 - Colorado State University

Conversion Routine (2 of 3)

ADD R1, R1, #-1 ; one less digit
BRz DoneAtoB ; done if zero
ADD R2, R2, #-1 ; points to tens digit

LDR R4, R2, #0 ; load digit
ADD R4, R4, R3 ; convert to number
LEA R5, Lookup10 ; multiply by 10
ADD R5, R5, R4
LDR R4, R5, #0
ADD R0, R0, R4 ; adds 10’s
ADD R1, R1, #-1 ; one less digit
BRz DoneAtoB ; done if zero
ADD R2, R2, #-1 ; points to hundreds digit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS270 - Fall 2011 - Colorado State University

Conversion Routine (3 of 3)
 LDR R4, R2, #0 ; load digit
 ADD R4, R4, R3 ; convert to number
 LEA R5, Lookup100 ; multiply by 100
 ADD R5, R5, R4
 LDR R4, R5, #0
 ADD R0, R0, R4 ; adds 100's
Done RET

NegZero .FILL xFFD0 ; -0x30
ASCIIBUF .BLKW 4
Lookup10 .FILL 0
 .FILL 10
...
Lookup100 .FILL 0
 .FILL 100
...

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33 CS270 - Fall 2011 - Colorado State University

Binary to ASCII Conversion

! Converting a 2's complement binary value to
a three-digit decimal number
n  Resulting characters can be output using OUT

! Instead of multiplying, we need to divide by 100
to get hundreds digit.
n  Why wouldn't we use a lookup table for this problem?
n  Subtract 100 repeatedly from number to divide.

! First, check whether number is negative.
n  Write sign character (+ or -) to buffer and make

positive.

