
1

Chapter 15
Debugging

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Spring 2011 - Colorado State University

Debugging with High Level Languages
! Same goals as low-level debugging

n  Examine and set values in memory
n  Execute portions of program
n  Stop execution when (and where) desired

! Want debugging tools to operate on
high-level language constructs
n  Examine and set variables, not memory locations
n  Trace and set breakpoints on statements and function

calls, not instructions
n  ...but also want access to low-level tools when

needed

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Spring 2011 - Colorado State University

Types of Errors

! Syntactic Errors
n  Input code is not legal
n  Caught by compiler (or other translation mechanism)

! Semantic Errors
n  Legal code, but not what programmer intended
n  Not caught by compiler, because syntax is correct

! Algorithmic Errors
n  Problem with the logic of the program
n  Program does what programmer intended,

but it doesn't solve the right problem

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Spring 2011 - Colorado State University

Syntactic Errors
! Common errors:

n  missing semicolon or brace
n  mis-spelled type in declaration

! One mistake can cause an avalanche of errors
n  because compiler can't recover and gets confused

main () {
 int i
 int j;
 for (i = 0; i <= 10; i++) {
 j = i * 7;
 printf("%d x 7 = %d\n", i, j);
 }
}

missing semicolon

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Spring 2011 - Colorado State University

Semantic Errors
! Common Errors

n  Missing braces to group statements together
n  Confusing assignment with equality
n  Wrong assumptions about precedence/associativity
n  Wrong limits on for-loop counter
n  Uninitialized variables

main () {
 int i
 int j;
 for (i = 0; i <= 10; i++)
 j = i * 7;
 printf("%d x 7 = %d\n", i, j);
}

missing braces,
so printf not part of if

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Spring 2011 - Colorado State University

Algorithmic Errors

! Design is wrong, so program does not solve the
correct problem

! Difficult to find
n  Program does what we intended
n  Problem might not show up until after many runs

! Maybe difficult to fix
n  May have to redesign
n  May have large impact on program code

! Classic example: Y2K bug
n  only allow 2 digits for year, assuming 19__

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Spring 2011 - Colorado State University

Debugging Techniques
! Ad-Hoc

n  Insert printf statements to track control flow and
display values

n  Add code to explicitly check for values out of
expected range, incorrect branches, etc.

n  Advantage:
! No special debugging tools needed

n  Disadvantages:
•  Frequent recompile and execute cycles makes this

method time-consuming
•  Requires intimate knowledge of code
•  Inserted code can be buggy

! Source-Level Debugger
n  Examine and set variable values
n  Tracing, breakpoints, single-stepping on source-code

statements
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Spring 2011 - Colorado State University

Source-Level Debugger

main window
of Cygwin
version of gdb

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Spring 2011 - Colorado State University

Source-Level Debugging Techniques
! Breakpoints

n  Stop when a particular statement is reached
n  Stop at entry or exit of a function
n  Conditional breakpoints:

Stop if a variable is equal to a specific value, etc.
n  Watchpoints:

Stop when a variable is set to a specific value
! Single-Stepping

n  Execute one statement at a time
n  Step "into" or step "over" function calls

•  Step into: next statement is first inside function call
•  Step over: execute function without stopping
•  Step out: finish executing function, stop on exit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Spring 2011 - Colorado State University

Source-Level Debugging Techniques

! Displaying Values
n  Show value consistent with declared type of variable
n  Dereference pointers (variables that hold addresses)

! See Chapter 16
n  Inspect parts of a data structure

•  See Chapters 19

