Chapter 15

ﬁ Debugging

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

uired for ion or display.

Copyright © The McGraw-Hill Companies, Inc. req

Debugging with High Level Languages

o Same goals as low-level debugging
=« Examine and set values in memory
= Execute portions of program
= Stop execution when (and where) desired

@ Want debugging tools to operate on
high-level language constructs
« Examine and set variables, not memory locations
= Trace and set breakpoints on statements and function
calls, not instructions
= ...but also want access to low-level tools when
needed

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. required for

or display.

Types of Errors

@ Syntactic Errors

= Input code is not legal

= Caught by compiler (or other translation mechanism)
@ Semantic Errors

=« Legal code, but not what programmer intended

= Not caught by compiler, because syntax is correct
@ Algorithmic Errors

= Problem with the logic of the program

= Program does what programmer intended,
but it doesn't solve the right problem

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Syntactic Errors

@ Common errors:
= Missing semicolon or brace
= mis-spelled type in declaration
@ One mistake can cause an avalanche of errors

= because compiler can't recover and gets confused
main () {
int i <—

missing semicolon

int j;
for (i = 0; i <= 10; i++) {
j=1i*7;

printf("%d x 7 = %d\n", i, j);
}
}

CS270 - Spring 2011 - Colorado State University 4

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Semantic Errors

@ Common Errors
= Missing braces to group statements together

Confusing assignment with equality

Wrong assumptions about precedence/associativity

Wrong limits on for-loop counter

= Uninitialized variables

missing braces,

main () { so printf not part of if
int i
int j;
for (i = 0; i <= 10; i++)
j=1i*7;

printf("%d x 7 = %d\n", i, j);

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Algorithmic Errors

@ Design is wrong, so program does not solve the
correct problem
@ Difficult to find
« Program does what we intended
= Problem might not show up until after many runs
@ Maybe difficult to fix
=« May have to redesign
= May have large impact on program code
@ Classic example: Y2K bug
« only allow 2 digits for year, assuming 19__

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Debugging Techniques
o Ad-Hoc

= Insert printf statements to track control flow and
display values

= Add code to explicitly check for values out of
expected range, incorrect branches, etc.

« Advantage:
@No special debugging tools needed
« Disadvantages:

* Frequent recompile and execute cycles makes this
method time-consuming

* Requires intimate knowledge of code

* Inserted code can be buggy
CS270 - Spring 2011 - Colorado State University 7

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Source-Level Debugger
R

File Run View Control Preferences Help

FH000 DO X80 M-1E [oacies] ol

1 #include <stdio.h>
2

3 int AllSum(int n);

main window

of Cygwin
int in; /* Input value =/ .
int sum; /% Value of 1+2+43+...+n */ version of gdb

N
5 int main()

6 {

7

8

9

18 do {
11 printf("Input a number: ");
12 scanf("%d", &in);

13

LI if (in > 8) {

- 15 sum = AllSum{in);
- 16 printf{"The AllSum of %d is %d\n", in, sum);
17
- 18 } while (in > 8);
- 19 3
28
21 int AllSum({int n)
- 22 {
- 23 int f; /% Iteration count =/ =
24 int result; /* Result to be returned */
25
- 26 for (i=1; i<=n; i++) /* This loop calculates sum x/
- 27 result = result + ij Ll

Program stopped at line 14

[a11sum.c ~| |main ~| [sourcE | |

e —— 8

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Source-Level Debugging Techniques

9 Breakpoints
= Stop when a particular statement is reached

= Stop at entry or exit of a function

« Conditional breakpoints:
Stop if a variable is equal to a specific value, etc.

« Watchpoints:
Stop when a variable is set to a specific value
@ Single-Stepping

=« Execute one statement at a time

= Step "into" or step "over" function calls
 Step into: next statement is first inside function call
» Step over: execute function without stopping
» Step out: finish executing function, stop on exit

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. required for or display.

Source-Level Debugging Techniques

@ Displaying Values
= Show value consistent with declared type of variable
= Dereference pointers (variables that hold addresses)
@See Chapter 16
= Inspect parts of a data structure
» See Chapters 19

CS270 - Spring 2011 - Colorado State University

