
1 

Chapter 11 
Introduction to 

Programming in C 

Original slides from Gregory Byrd, North 
Carolina State University 

Modified slides by Chris Wilcox,             
Colorado State University 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

2 CS270 - Spring 2011 - Colorado State University 

C: A High-Level Language 
! Gives symbolic names to values 

n  don’t need to know register or memory location 
! Provides abstraction of underlying hardware 

n  operations do not depend on instruction set 
n  example: “a = b * c”, even without multiply instruction 

! Provides expressiveness 
n  use meaningful symbols that convey meaning 
n  simple expressions for control patterns (if-then-else) 

! Enhances code readability 
! Safeguards against bugs 

n  enforce rules or conditions at compile-time or run-time 



2 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

3 CS270 - Spring 2011 - Colorado State University 

Compilation vs. Interpretation 
! Different ways of translating high-level language 
! Interpretation 

n  interpreter = program that executes program statements 
n  generally one line or command at a time 
n  limited scope of processing 
n  easy to debug, make changes, view intermediate results 
n  languages: BASIC, LISP, Perl, Java, Matlab, C-shell 

! Compilation 
n  Compiler = program that makes an executable from code 
n  translates statements into machine language 
n  performs optimization over multiple statements 
n  change requires recompilation 
n  optimized code can be harder to debug 
n  languages: C, C++, Fortran, Pascal 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

4 CS270 - Spring 2011 - Colorado State University 

Compilation vs. Interpretation 

! Consider the following algorithm: 
n  Get W from the keyboard. 
n  X = W + W 
n  Y = X + X 
n  Z = Y + Y 
n  Print Z to screen. 

! If interpreting, how many arithmetic operations? 
! If compiling, can we simplify the computation? 
! Yes, by analyzing the entire program, we can 

reduce to single arithmetic operation! 



3 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

5 CS270 - Spring 2011 - Colorado State University 

Compiling a C Program 
! Compilers have multiple phases: 
! Preprocessor 

n  macro substitution 
n  conditional compilation 
n  source-level transformations 
n  output is still C code 

! Compiler 
n  generates machine instructions 
n  output is object file 

! Linker 
n  combines object files 

(including libraries) 
n  output is executable image 

C 
Source and 
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

6 CS270 - Spring 2011 - Colorado State University 

Compiler 
! Source Code Analysis 

n  “front end” 
n  parses programs to identify its pieces: 
   (variables, expressions, statements, functions, etc.) 
n  depends on language, not on target machine 

! Code Generation 
n  “back end” 
n  generates machine code from analyzed source 
n  may optimize machine code for efficiency 
n  very dependent on target machine 

! Symbol Table 
n  map between symbolic names and items 
n  like assembler, but more kinds of information 



4 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

7 CS270 - Spring 2011 - Colorado State University 

A Simple Java Program 

#import java.io.*; 
public class Simple { 
 
/* Function: main */ 
/* Description: counts down from user input to STOP */ 
public static void main(String[] args) …  
{ 
  /* variable declarations */ 
  public static final int STOP = 0; 
  int counter;  /* an integer to hold count values */ 
  int startPoint; /* starting point for countdown */ 
 

  /* prompt user for input */ 
  System.out.println("Enter a positive number: "); 
  startPoint = Integer.parseInt(in.readLine()); 
 

  /* count down and print count */ 
  for (counter=startPoint; counter>=STOP; counter--) 
    System.out.println(counter); 
} 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

8 CS270 - Spring 2011 - Colorado State University 

A Simple C Program 

#include <stdio.h> 
#define STOP 0 
 
/* Function: main */ 
/* Description: counts down from user input to STOP */ 
int main(int argc, char *argv[]) 
{ 
  /* variable declarations */ 
  int counter;  /* an integer to hold count values */ 
  int startPoint; /* starting point for countdown */ 
 
  /* prompt user for input */ 
  printf("Enter a positive number: "); 
  scanf("%d", &startPoint);  /* read into startPoint */ 
 
  /* count down and print count */ 
  for (counter=startPoint; counter>=STOP; counter--) 
    printf("%d\n", counter); 
} 



5 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

9 CS270 - Spring 2011 - Colorado State University 

Preprocessor Directives 
! #include <stdio.h> 

n  Before compiling, copy contents of header file 
(stdio.h) into source code. 

n  Header files typically contain descriptions of 
functions and variables needed by the program. 

n  No restrictions, could be any C source code, 
including your own. 

! #define STOP 0 
n  Commonly called a macro, before compiling, 

replace all instances of string "STOP" with "0" 
n  Used for values that are constant during execution, 

but might change if the program is reused.  
(requires recompilation.) 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

10 CS270 - Spring 2011 - Colorado State University 

Comments 

! Begins with /*, ends with */ 
! Can span multiple lines 
! Cannot have a comment within a comment 
! -c99 allows use of single line comments: // 
! Comments are not recognized within a string 

n  example: "my /*don't print this*/ string" 
would be printed as: my /*don't print this*/ string 

! As before, use comments to help reader, not to 
confuse or to restate the obvious 



6 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

11 CS270 - Spring 2011 - Colorado State University 

main Function 
Every C program must have a main() function: 
! The main function contains the code that is 

executed when the program is run. 
! As with all functions, the code for main lives 

within brackets: 
 main() 
 { 
   /* code goes here */ 
 } 
! Legal syntax, but simplified to defer discussion 

of return type and command line options. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

12 CS270 - Spring 2011 - Colorado State University 

Variable Declarations 

! Variables are used as names for data items. 
! Each variable has a type, which tells the 

compiler how the data is to be interpreted 
(and how much space it needs). 

 int counter; 
 int startPoint; 
! int is a predefined signed integer type in C. 
 



7 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

13 CS270 - Spring 2011 - Colorado State University 

Input and Output 
Variety of I/O functions in C Standard Library: 
 

! Must include <stdio.h> to use them. 
  printf("%d\n", counter); 

n  String contains characters to print and formatting 
directions for variables. 

n  This call prints the variable counter as a decimal 
integer, followed by a linefeed (\n). 

  scanf("%d", &startPoint); 
n  String contains formatting directions for interpreting 

the type of the input. 
n  This call reads a decimal integer and assigns it to the 

variable startPoint.  (Don't worry about the & yet!) 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

14 CS270 - Spring 2011 - Colorado State University 

More About Output 

! Can print arbitrary expressions, not just variables 
 printf("%d\n", startPoint - counter); 
! Print multiple expressions with a single statement 
 printf("%d %d\n", counter,  
            startPoint - counter); 

! Different formatting options: 
n   %d   decimal integer 
n   %x   hexadecimal integer 
n   %c   ASCII character 
n   %f   floating-point number 



8 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

15 CS270 - Spring 2011 - Colorado State University 

Examples 
! This code: 
  printf("%d is a prime number.\n", 43); 
  printf("43 plus 59 (decimal) is %d.\n", 43+59); 
  printf("43 plus 59 (hex) is %x.\n", 43+59); 
  printf("43 plus 59 (char) is %c.\n", 43+59); 

    produces this output: 
  43 is a prime number. 
  43 plus 59 (decimal) is 102. 
  43 plus 59 (hex) is 66. 
  43 plus 59 (char) is f. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

16 CS270 - Spring 2011 - Colorado State University 

Examples of Input 
! Many of the same formatting characters are 

available for user input. 
  scanf("%c", &nextChar); 

n  reads a single character and stores it in nextChar 

  scanf("%f", &radius); 
n  reads a floating point number and stores it in radius 

  scanf("%d %d", &length, &width); 
n  reads two decimal integers (separated by whitespace),  

stores the first one in length and the second in width 
! Must use ampersand (&) for variables being 

modified, pointers will be discussed later. 



9 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

17 CS270 - Spring 2011 - Colorado State University 

Compiling and Linking 

! Various compilers available 
n  cc, gcc 
n  includes preprocessor, compiler, and linker 

! Lots and lots of options! 
n  level of optimization, debugging 
n  preprocessor, linker options 
n  usually controlled by makefile 
n  intermediate files --  

object (.o), assembler (.s), preprocessor (.i), etc. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

18 CS270 - Spring 2011 - Colorado State University 

Remaining Chapters 

! A more detailed look at many C features: 
n  Variables and declarations 
n  Operators 
n  Control Structures 
n  Functions 
n  Data Structures 
n  I/O 

! Emphasis on how C is converted to assembly 
language. 

! Also see C Reference in Appendix D. 


