Chapter 11
Introduction to
Programming in C

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

C: A High-Level Language

o Gives symbolic names to values
= don’ t need to know register or memory location

@ Provides abstraction of underlying hardware
= operations do not depend on instruction set
= example: “a =b * ¢”, even without multiply instruction

@ Provides expressiveness
= use meaningful symbols that convey meaning
= simple expressions for control patterns (if-then-else)

@ Enhances code readability

o Safeguards against bugs
= enforce rules or conditions at compile-time or run-time

CS270 - Spring 2011 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compilation vs. Interpretation
@ Different ways of translating high-level language

9 Interpretation
=« interpreter = program that executes program statements

generally one line or command at a time
limited scope of processing
easy to debug, make changes, view intermediate results

= languages: BASIC, LISP, Perl, Java, Matlab, C-shell
o Compilation
=« Compiler = program that makes an executable from code
« translates statements into machine language
= performs optimization over multiple statements
= change requires recompilation
= optimized code can be harder to debug
« languages: C, C++, Fortran, Pascal

CS270 - Spring 2011 - Colorado State University 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compilation vs. Interpretation

@ Consider the following algorithm:

Get W
X=W
Y =X
Z =Y
Print

from the keyboard.
+ W
+ X
+ Y

Z to screen.

@ If interpreting, how many arithmetic operations?
@ If compiling, can we simplify the computation?

@ Yes, by analyzing the entire program, we can
reduce to single arithmetic operation!

CS270 - Spring 2011 - Colorado State University 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compiling a C Program
@ Compilers have multiple phases: Souse ma
o Preprocessor

= macro substitution
= conditional compilation
= source-level transformations

C Preprocessor

Compiler

= output is still C code
@ Compiler

= generates machine instructions Tomoss. |

= output is object file
o Linker -
= combines object files oeenes

(including libraries)

= output is executable image
CS270 - Spring 2011 - Colorado State University 5
Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

@ Source Code Analysis
= “front end”

= parses programs to identify its pieces:
(variables, expressions, statements, functions, etc.)
=« depends on language, not on target machine
o Code Generation
= “back end”
= generates machine code from analyzed source
= may optimize machine code for efficiency
= very dependent on target machine
@ Symbol Table
= map between symbolic names and items
= like assembler, but more kinds of information

CS270 - Spring 2011 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

A Simple Java Program

#imgo:t ava.io.*;
public class Simple {

/* Function: main */
/* Description: counts down from user input to STOP */
?ublic statiec void w=in(String[] args) ..

/* variable declarations ¥/

public static final int STOP = 0;

int counter; /* an integer to hold count wvalues */
int startPoint; /% starting point for countdown %/

/* prompt user for input */
Syztam, gur geiacla("Enter a positive number: ") ;
startPoint = Iantagzr.gaesslaor (la, cazdlias());

/* count down and print count */

for (counter=startPoint; countez>=STOP; counter—-)
Systam. gut . grintln(counter) ;

CS270 - Spring 2011 - Colorado State University 7

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

A Simple C Program

#include <stdio.h>
f#define STOP O

/* Function: main */
/* Description: counts down from user input to STOP */
int w=in(int argc, char *argv[])
{
/* wvariable declarations */
int counter; /% an integer to hold count values */
int startPoint; /% starting point for countdown %/

/* prompt user for imput */

princE("Enter a positive number: ") ;

soznf ("%d", &startPoint); /¥ read into startPoint %/
/

* gount down and print count */
for (counter=startPoint; counter>=STOP; counter--)
princF("%d\n", ecounter) ;

CS270 - Spring 2011 - Colorado State University 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Preprocessor Directives

9 #include <stdio.h>
= Before compiling, copy contents of header file
(stdio.h) into source code.
= Header files typically contain descriptions of
functions and variables needed by the program.
= No restrictions, could be any C source code,
including your own.
O #define sSTOP 0
= Commonly called a macro, before compiling,
replace all instances of string "STOP" with "0"
= Used for values that are constant during execution,
but might change if the program is reused.
(requires recompilation.)

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Comments

@ Begins with /*, ends with */

@ Can span multiple lines

@ Cannot have a comment within a comment
@ -c99 allows use of single line comments: //

@ Comments are not recognized within a string

« example: "my /*don't print this*/ string”
would be printed as: my /*don't print this*/ string

@ As before, use comments to help reader, not to
confuse or to restate the obvious

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

main Function

Every C program must have a main () function:
@ The main function contains the code that is
executed when the program is run.

@ As with all functions, the code for main lives
within brackets:

@ Legal syntax, but simplified to defer discussion
of return type and command line options.

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Variable Declarations

@ Variables are used as names for data items.

@ Each variable has a type, which tells the
compiler how the data is to be interpreted
(and how much space it needs).

in‘t countcter;

——— T

S oI

@ int is a predefined signed integer type in C.

CS270 - Spring 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Input and Output

Variety of /O functions in C Standard Library:

@ Must include <stdio.h> to use them.
oreintf ("$d\n", counter);
= String contains characters to print and formatting
directions for variables.
= This call prints the variable esunter as a decimal
integer, followed by a linefeed (\n).

e ==

= String contains formatting directions for interpreting
the type of the input.

« This call reads a decimal integer and assigns it to the
variable staztPoint. (Don't worry about the & yet!)

CS270 - Spring 2011 - Colorado State University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More About Output

@ Can print arbitrary expressions, not just variables

cintf("%d\n", startPo

LN
= —_—

o

- t - co-l-lrn-r—.:rr') ;

rint multiple expressions with a single statement
oeinef("%d $d\n", counter,
startPoint - counter) ;

@ Different formatting options:

U 'o

Qo

e

= %d decimal integer

= %x hexadecimal integer
= %e ASCII character

« %£ floating-point number

CS270 - Spring 2011 - Colorado State University 14

o Thi

o)

Copyright © The McGraw-Hill Companies, Inc. Permission re

Examples
de'

"%d is a prime number.\n",

quired for reproduction or

display.

43) ;

£(

F("43 plus 59 (decimal) is %d.\n", 43+59);
7("43 plus 59 (hex) is %x.\n", 43+59);
7("43 plus 59 (char) is %c.\n", 43+459);

produces this output:

[CON E E
2 b

T T @

i 1 =

B o o 'o
v Iy I3 Iy

=

L
L

A3 iz 20 gelimz ouuioze
43 plus 39 (degimal) iz 102
43 plus 39 (nex) is §3.
43 pglus 39 (chze) isg E|
CS270 - Spring 2011 - Colorado State University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Examples of Input

@ Many of the same formatting characters are
available for user input.

E.. (mw %c" (") ,.

= reads a single character and stores it in nextChar

~= ("o f"

Nt

. reads a floating point number and stores it in radius
sczanf("%d 3d", &leng &width) ;

= reads two decimal integers (separated by whitespace),
stores the first one in length and the second in width

@ Must use ampersand (&) for variables being
modified, pointers will be discussed later.

tCha

&neszt

w

sradius) ;

w

th

=27

CS270 - Spring 2011 - Colorado State University 16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compiling and Linking

@ Various compilers available

= CC, gcC

= includes preprocessor, compiler, and linker
@ Lots and lots of options!

= level of optimization, debugging

= preprocessor, linker options

= usually controlled by makefile

= intermediate files --
object (.0), assembler (.s), preprocessor (.i), etc.

CS270 - Spring 2011 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Remaining Chapters

@ A more detailed look at many C features:
= Variables and declarations
= Operators

Control Structures

=« Functions

= Data Structures

= 1/0

@ Emphasis on how C is converted to assembly
language.

@ Also see C Reference in Appendix D.

CS270 - Spring 2011 - Colorado State University 18

