Chapter 12
Variables and
Operators

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

Basic C Elements

o Variables
= named, typed data items

o Operators
= predefined actions performed on data items

= combined with variables to form expressions,
statements

@ Rules and usage
@ Implementation using LC-3 instructions

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Types

@ C has three basic data types

int integer (at least 16 bits)
double floating point (at least 32 bits)
char character (at least 8 bits)

@ Exact size can vary, depending on processor

» intis supposed to be "natural" integer size, for LC-3
that's 16 bits, LC-3 does not have double

= int on a modern processor is usually 32 bits,
double is usually 64 bits

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Variable Names

@ Any combination of letters, numbers, and
underscore ()

@ Case matters
= “sum” is different from “Sum?”, this is also true of
function names
@ Cannot begin with a number
= usually variables beginning with underscore
are used only in special library routines
o Only first 31 characters are used

= actually that’s compiler dependent, so be careful
not to create ambiguous variables!

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Examples

o Legal
i
wordsPerSecond
same identifier
words per second
_green
aReally longName | moreThan3lchars
aReally longName moreThan3lcharacters

o lllegal
10sdigit
ten'sdigit
done?
double

reserved keyword

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Literals

9 Integer
123 /* decimal */
-123
0x123 /* hexadecimal */

o Floating point

6.023
6.023e23 /* 6.023 x 1023 *x/
5E12 /* 5.0 x 1012 */
@ Character
1 C 1
'\n' /* newline */

"\xA' /* ASCII 10 (0OxA) */

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scope: Global and Local

@ Where is the variable accessible?
@ Global: accessed anywhere in program
@ Local: only accessible in a particular region

@ Compiler infers scope from where variable is
declared in the program
=« programmer doesn’t have to explicitly state

o Variable is local to the block in which it is declared
= block defined by open and closed braces { }
= Can access variable declared in any “containing” block
= global variables are declared outside all blocks

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

#include <stdio.h>
int itsGlobal = 0;

main ()

int itsLocal = 2;
1tsGlobal = 4;

}
Quitput

Global 0 Local 1
Global 4 lLocal 2
Global 4 local 1

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Operators

@ Programmers manipulate variables using the
operators provided by the high-level language.

@ Variables and operators combine to form
expressions and statements.

@ These constructs denote the work to be done by
the program.

@ Each operator may correspond to many
machine instructions.

=« Example: The multiply operator (*) typically requires
multiple LC-3 ADD instructions.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Expression

@ Any combination of variables, constants,
operators, and function calls
= every expression has a type, derived from the types
of its components (according to C typing rules)

@ Examples:
B coulnese
w32 3seret (W)

B 3 &

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Statement

@ Expresses a complete unit of work
= executed in sequential order
@ Simple statement ends with semicolon
» z =2 % y; [* assign product to z */

= v =vyv -+ 1; /* after multiplication */

e ; /* null statement */

@ Compound statement groups simple statements
using braces.

= syntactically equivalent to a simple statement
e [2z =35 % vy; v=uyw-+1l;;

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Operators
Three things to know about each operator:
@ (1) Function
= what does the operator do?
9 (2) Precedence
= in which order are operators combined?
« Example:a*b +c*d"isthe sameas"(a*b)+(c*
d)“
since multiply has higher precedence than addition
9 (3) Associativity
= in which order are operators of the same precedence
combined?

=« Example: a-b-c"is the same as "(a-b)-c"
because add andsubtractasseciatedeft-to-right

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assignment Operator

@ Changes the value of a variable.

. = [/|
e e - -
4 = 4 U =iz

I
E

1

valuate right-hand side.

2. Set value of left-hand side variable to result.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assignment Operator

@ All expressions evaluate to a value,
even ones with the assignment operator.

o For assignment, the result is the value assigned.

= usually (but not always) the value of right-hand side

= type conversion might make assigned value
different than computed value

@ Assignment associates right to left.

-
<

v =3 =3

= Yy gets the value 3, because (x = 3) evaluates to the value 3.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Arithmetic Operators

Symbol | Operation Usage |Precedence| Assoc
i multiply %y 6 |-to-r
/ divide w /vy 6 |-to-r
% modulo %y 6 -to-r
+ add s F Y 7 I-to-r
- subtract o=y 7 -to-r

@ All associate left to right.
@ + / % have higher precedence than - -.
@ Full precedence chart on page 602 of textbook

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. ission required for or display.

Arithmetic Expressions

o If mixed types, smaller type is "promoted" to
larger.

. ! VIR
e - -
25 G <3¢

= if X is int, converted to float and result is float
o Integer division -- fraction is dropped.

w /3

« if xis int and x=5, result is 1 (not 1.666666...)
@ Modulo -- result is remainder.

2w 3

= if x is int and x=5, result is 2.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc.

Permission required for reproduction or display.

Bitwise Operators

Symbol | Operation Usage | Precedence | Assoc
~ bitwise NOT oyt 4 r-to-|
<< left shift 3 <<y 8 -to-r
>> right shift s >> 8 -to-r
& bitwise AND oSy 11 |-to-r
2 bitwise XOR | = ~ v 12 |-to-r

| bitwise OR | = | v 13 I-to-r

@ Operate on variables bit-by-bit.
= Like LC-3 AND and NOT instructions.

@ Shift operations are logical (not arithmetic).
= Operate on values -- neither operand is changed.

CS270 - Fall 2011 - Colorado State University
Logical Operators
Symbol | Operation Usage |Precedence| Assoc
! logical NOT 1ye 4 r-to-I
&& logical AND | i =z v 14 |-to-r
I Logical OR | i« || v 15 |-to-r

@ Treats entire variable (or value) as TRUE (non-zero) or

FALSE

(zero).

@ Result of a logcial operation is always either TRUE (1)
or FALSE (0).

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Compa

nies, Inc. Permission required for reproduction or display.

Relational Operators

Symbol Operation Usage |Precedence| Assoc
> greater than > v 9 |-to-r
>= greater or equal |2 >= v 9 |-to-r
< less than w2 < vy 9 -to-r
< less or equal |:c <= v 9 |-to-r
== equals o= v 10 -to-r
I= not equals w2 I= v 10 |-to-r

o Resultis 1 (TRUE) or 0 (FALSE).

o Note: Don't confuse equality (==) with assignment (=)!

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Compar

nies, Inc. Permission required for reproduction or display.

Special Operators: ++ and --

Symbol| Operation | Usage | Precedence| Assoc
e postincrement | uc-r-- 2 r-to-I
-- postdecrement| u:—- 2 r-to-I
++ preincrement | -r-rue 3 r-to-I
- predecrement | —-:c 3 r-to-|

@ Changes value of variable before (or after)

its value is used in an expression.

» Pre: Increment/decrement variable before using its value.
» Post: Increment/decrement variable after using its value.

CS270 - Fall 2011 - Colorado State University

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using ++ and --

P = /I_ -

Y = e
@ Results: x=5,y=4
(because x is incremented after assignment)

Y = e
@ Results: x=5,y=5
(because x is incremented before assignment)

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Practice with Precedence
@ Assume a=1, b=2, c=3, d=4.

x=2a¥*b+e®d/2; /4N
@ same as:
2= (a %) + ((c=d [/ 2);

@ For long or confusing expressions,
use parentheses, because reader might not have
memorized precedence table.

@ Note: Assignment operator has lowest precedence,
so operations on the right-hand side are evaluated
before assignment.

CS270 - Fall 2011 - Colorado State University

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Special Operator: Conditional

Symbol | Operation | Usage |Precedence| Assoc
?: conditional | 7y : = 16 |-to-r

@ If x is TRUE (non-zero), result is y; else, result is z.
@ Like a MUX, with x as the select signal.

y y
| |
1 o/X

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Special Operators: +=, *=, efc.

@ Arithmetic and bitwise operators can be combined
with assignment operator.
Statement Equivalent assignment

3 o= VY ¥ =3 or Y

¥ == v; 2= o3 = WY

¢ W=y 2= 5w Y All have same
e /= v; 2w =3/ v; precedence and
2 5= Y ¥ =3 5 Yy associativity as =
i L=y = 32 &y and associate
= v = | W right-to-left.
3 =y =3 7y

3 X<= Yy ¥ o= o XK WYy

3¢ >>= Y o= 3 > v

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Symbol Table

@ Like assembler, compiler needs to know
information associated with identifiers

= in assembler, all identifiers were labels
and information is address

@ Compiler keeps more information

. Name (identifier) Name Type | Offset | scope
= Type amount int 0 main
. Location in memory | hours I -3 | main
minutes int -4 main
= Scope rate int -1 main
seconds int -5 main
time int -2 main

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Allocating Space for Variables

@ Global data section 0x0000

= All global variables stored here
R4 points to beginning
@ Run-time stack

= Used for local variables global data

= R6 points to top of stack
= R5 points to top frame on stack
= New frame for each block
(goes away when block exited)
@ Offset = distance from beginning
of storage area

= Global: LDR Rl' R.‘_‘,' *4 OXFFFF

g ennns PC
le— R4
..... R6
..... R5

« Local: LDR R2, R5, #-3

CS270 - Fall 2011 - Colorado State University

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Local Variable Storage

@ Local variables are stored in an
activation record, also known as a stack frame.

@ Symbol table “offset” gives the

distance from the base of the frame. seconds

» R5is the frame pointer — holds address mhigllﬁs
of the base of the current frame. e

= A new frame is pushed on the run-time rate
stack each time a block is entered. ~ R5—_amount

« Because stack grows downward,
base is the highest address of the frame,
and variable offsets are <= 0.

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Variables and Memory Locations

@ In our examples, a variable is always stored in
memory.

@ When assigning to a variable, must store to
memory location.

@ A real compiler would perform code
optimizations that try to keep variables allocated
in registers.

Why?

CS270 - Fall 2011 - Colorado State University

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Compiling to LC-3
#include <stdio.h>
int inGlobal;
main ()
int inLocal; /* local to main */

int outLocald;
int outLocalB;

/* initialize */
inLocal = 5;
inGlobal = 3;

/* perform calculations */

outLocalA = inlLocal++ & ~inGlobal;
outLocalB = (inLocal + inGlobal) - (inLocal -
inGlobal) ;

/* print results */
printf ("The results are: outLocalA = %d, outLocalB
= %d\n", outLocalA, outLocalB) ;

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Symbol Table

Name Type Offset Scope
inGlobal int 0 global
inLocal int 0 main
outLocalA |int ! main
outLocalB |[int =2 main

CS270 - Fall 2011 - Colorado State University

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Code Generation
(skip/skim for now)

AND RO, RO, #0
ADD RO, RO, #5 ; i
STR RO, R5, #0 ; (o

AND RO, RO, #0

ADD RO, RO, #3 ; i
STR RO, R4, #0 ; (o

CS270 - Fall 2011 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LDR R1, R4, #0 ; get inGlobal

NOT R1, R1 ; ~inGlebal

AND R2, RO, Rl ; inlocal & ~inGloba

STR R2, R5, #-1 ; store in ocutlocali
; (offset = =1)

CS270 - Fall 2011 - Colorado State University

16

Q
-

4

LDR
LDR
ADD
LDR
LDR
NOT
ADD
ADD
NOT
ADD
ADD
STR

Copyright © The McGraw-Hill Companies, Inc. ission required for o or display.

Example (continued)

; next statement:
; outlLocalB = (inlLocal + inGlobal)

RO, R5, #0

R1,
RO,
R2,
R3,
R3,
R3,
R2,
R2,
R2,
RO,
RO,

R4,
RO,
R5,
R5,
R3

R3,
R2,
R2

R2,
RO,
R5,

#0
R1
#0
#0

#1
R3

#1
R2
#-2

Se We Se So wo

@
14
“

r

(inLocal - inGlobal) ;
inLoecal

inGlobal

RO is sum

inLocal

inGlebal

R2 is difference
negate

RO = RO - R2
outlocal® (offset = -2)

CS270 - Fall 2011 - Colorado State University

17

