
1

Chapter 12
Variables and

Operators

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Basic C Elements

! Variables
n  named, typed data items

! Operators
n  predefined actions performed on data items
n  combined with variables to form expressions,

statements
! Rules and usage
! Implementation using LC-3 instructions

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Data Types

! C has three basic data types
int integer (at least 16 bits)
double floating point (at least 32 bits)
char character (at least 8 bits)
! Exact size can vary, depending on processor

n  int is supposed to be "natural" integer size, for LC-3
that's 16 bits, LC-3 does not have double

n  int on a modern processor is usually 32 bits,
double is usually 64 bits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Variable Names

! Any combination of letters, numbers, and
underscore (_)

! Case matters
n  “sum” is different from “Sum”, this is also true of

function names
! Cannot begin with a number

n  usually variables beginning with underscore
are used only in special library routines

! Only first 31 characters are used
n  actually that’s compiler dependent, so be careful

not to create ambiguous variables!

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Examples

! Legal
 i
wordsPerSecond
words_per_second
_green
aReally_longName_moreThan31chars
aReally_longName_moreThan31characters

! Illegal
 10sdigit
ten'sdigit
done?
double

reserved keyword

same identifier

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Literals
! Integer
 123 /* decimal */
 -123
 0x123 /* hexadecimal */
! Floating point
 6.023
 6.023e23 /* 6.023 x 1023 */
 5E12 /* 5.0 x 1012 */
! Character
 'c'
 '\n' /* newline */
 '\xA' /* ASCII 10 (0xA) */

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Scope: Global and Local

! Where is the variable accessible?
! Global: accessed anywhere in program
! Local: only accessible in a particular region
! Compiler infers scope from where variable is

declared in the program
n  programmer doesn’t have to explicitly state

! Variable is local to the block in which it is declared
n  block defined by open and closed braces { }
n  can access variable declared in any “containing” block
n  global variables are declared outside all blocks

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Example
#include <stdio.h>
int itsGlobal = 0;

main()
{
 int itsLocal = 1; /* local to main */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 {
 int itsLocal = 2; /* local to this block */
 itsGlobal = 4; /* change global variable */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
}

Output

 Global 0 Local 1
Global 4 Local 2
Global 4 Local 1

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Operators

! Programmers manipulate variables using the
operators provided by the high-level language.

! Variables and operators combine to form
expressions and statements.

! These constructs denote the work to be done by
the program.

! Each operator may correspond to many
machine instructions.
n  Example: The multiply operator (*) typically requires

multiple LC-3 ADD instructions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Expression

! Any combination of variables, constants,
operators, and function calls
n  every expression has a type, derived from the types

of its components (according to C typing rules)
! Examples:

n  counter >= STOP
n  x + sqrt(y)
n  x & z + 3 || 9 - w-- % 6

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Statement

! Expresses a complete unit of work
n  executed in sequential order

! Simple statement ends with semicolon
n  z = x * y; /* assign product to z */
n  y = y + 1; /* after multiplication */
n  ; /* null statement */

! Compound statement groups simple statements
using braces.
n  syntactically equivalent to a simple statement
n  { z = x * y; y = y + 1; }

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Operators
Three things to know about each operator:
! (1) Function

n  what does the operator do?

! (2) Precedence
n  in which order are operators combined?
n  Example: a * b + c * d" is the same as "(a * b) + (c *

d)“
since multiply has higher precedence than addition

! (3) Associativity
n  in which order are operators of the same precedence

combined?
n  Example: a - b - c" is the same as "(a - b) - c"

because add and subtract associate left-to-right

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Assignment Operator

! Changes the value of a variable.
 x = x + 4;

1. Evaluate right-hand side.

2. Set value of left-hand side variable to result.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Assignment Operator

! All expressions evaluate to a value,
even ones with the assignment operator.

! For assignment, the result is the value assigned.
n  usually (but not always) the value of right-hand side
n  type conversion might make assigned value

different than computed value
! Assignment associates right to left.

 y = x = 3;
n  y gets the value 3, because (x = 3) evaluates to the value 3.

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Arithmetic Operators

! All associate left to right.
! * / % have higher precedence than + -.
! Full precedence chart on page 602 of textbook

Symbol Operation Usage Precedence Assoc

* multiply x * y 6 l-to-r

/ divide x / y 6 l-to-r

% modulo x % y 6 l-to-r

+ add x + y 7 l-to-r

- subtract x - y 7 l-to-r

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Arithmetic Expressions

! If mixed types, smaller type is "promoted" to
larger.
 x + 4.3

n  if x is int, converted to float and result is float

! Integer division -- fraction is dropped.
 x / 3

n  if x is int and x=5, result is 1 (not 1.666666...)

! Modulo -- result is remainder.
 x % 3

n  if x is int and x=5, result is 2.

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Bitwise Operators

! Operate on variables bit-by-bit.
n  Like LC-3 AND and NOT instructions.

! Shift operations are logical (not arithmetic).
n  Operate on values -- neither operand is changed.

Symbol Operation Usage Precedence Assoc

~ bitwise NOT ~x 4 r-to-l

<< left shift x << y 8 l-to-r

>> right shift x >> y 8 l-to-r

& bitwise AND x & y 11 l-to-r

^ bitwise XOR x ^ y 12 l-to-r

| bitwise OR x | y 13 l-to-r

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Logical Operators

! Treats entire variable (or value) as TRUE (non-zero) or
FALSE (zero).

! Result of a logcial operation is always either TRUE (1)
or FALSE (0).

Symbol Operation Usage Precedence Assoc
! logical NOT !x 4 r-to-l

&& logical AND x && y 14 l-to-r

|| Logical OR x || y 15 l-to-r

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Relational Operators

! Result is 1 (TRUE) or 0 (FALSE).
! Note: Don't confuse equality (==) with assignment (=)!

Symbol Operation Usage Precedence Assoc
> greater than x > y 9 l-to-r

>= greater or equal x >= y 9 l-to-r

< less than x < y 9 l-to-r

< less or equal x <= y 9 l-to-r

== equals x == y 10 l-to-r

!= not equals x != y 10 l-to-r

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Special Operators: ++ and --

! Changes value of variable before (or after)
its value is used in an expression.
n  Pre: Increment/decrement variable before using its value.
n  Post: Increment/decrement variable after using its value.

Symbol Operation Usage Precedence Assoc
++ postincrement x++ 2 r-to-l

-- postdecrement x-- 2 r-to-l

++ preincrement ++x 3 r-to-l

-- predecrement --x 3 r-to-l

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Using ++ and --

x = 4;
y = x++;
! Results: x = 5, y = 4

(because x is incremented after assignment)
x = 4;
y = ++x;
! Results: x = 5, y = 5

(because x is incremented before assignment)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Practice with Precedence
! Assume a=1, b=2, c=3, d=4.
x = a * b + c * d / 2; /* x = 8 */
! same as:
x = (a * b) + ((c * d) / 2);
! For long or confusing expressions,

use parentheses, because reader might not have
memorized precedence table.

! Note: Assignment operator has lowest precedence,
so operations on the right-hand side are evaluated
before assignment.

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Special Operator: Conditional

! If x is TRUE (non-zero), result is y; else, result is z.
! Like a MUX, with x as the select signal.

x

y z

1 0

Symbol Operation Usage Precedence Assoc
? : conditional x?y:z 16 l-to-r

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Special Operators: +=, *=, etc.
! Arithmetic and bitwise operators can be combined

with assignment operator.
 Statement Equivalent assignment
 x += y; x = x + y;
 x -= y; x = x - y;
 x *= y; x = x * y;
 x /= y; x = x / y;
 x %= y; x = x % y;
 x &= y; x = x & y;
 x |= y; x = x | y;
 x ^= y; x = x ^ y;
 x <<= y; x = x << y;
 x >>= y; x = x >> y;

All have same
precedence and
associativity as =

and associate
right-to-left.

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Symbol Table

! Like assembler, compiler needs to know
information associated with identifiers

n  in assembler, all identifiers were labels
and information is address

! Compiler keeps more information
n  Name (identifier)
n  Type
n  Location in memory
n  Scope

Name Type Offset Scope

amount
hours
minutes
rate
seconds
time

int
int
int
int
int
int

0
-3
-4
-1
-5
-2

main
main
main
main
main
main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Allocating Space for Variables
! Global data section

n  All global variables stored here
R4 points to beginning

! Run-time stack
n  Used for local variables
n  R6 points to top of stack
n  R5 points to top frame on stack
n  New frame for each block

(goes away when block exited)
! Offset = distance from beginning

of storage area
n  Global: LDR R1, R4, #4
n  Local: LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Local Variable Storage

! Local variables are stored in an
activation record, also known as a stack frame.

! Symbol table “offset” gives the
distance from the base of the frame.
n  R5 is the frame pointer – holds address

of the base of the current frame.
n  A new frame is pushed on the run-time

stack each time a block is entered.
n  Because stack grows downward,

base is the highest address of the frame,
and variable offsets are <= 0.

seconds
minutes

hours
time
rate

amount

R5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Variables and Memory Locations

! In our examples, a variable is always stored in
memory.

! When assigning to a variable, must store to
memory location.

! A real compiler would perform code
optimizations that try to keep variables allocated
in registers.

Why?

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Example: Compiling to LC-3
#include <stdio.h>
int inGlobal;

main()
{
 int inLocal; /* local to main */
 int outLocalA;
 int outLocalB;

 /* initialize */
 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal -

inGlobal);

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB

= %d\n", outLocalA, outLocalB);
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Example: Symbol Table
Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Example: Code Generation
(skip/skim for now)

! ; main
! ; initialize variables

 AND R0, R0, #0
 ADD R0, R0, #5 ; inLocal = 5
 STR R0, R5, #0 ; (offset = 0)

 AND R0, R0, #0
 ADD R0, R0, #3 ; inGlobal = 3
 STR R0, R4, #0 ; (offset = 0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Example (continued)
! ; first statement:
! ; outLocalA = inLocal++ & ~inGlobal;

 LDR R0, R5, #0 ; get inLocal
 ADD R1, R0, #1 ; increment
 STR R1, R5, #0 ; store

 LDR R1, R4, #0 ; get inGlobal
 NOT R1, R1 ; ~inGlobal
 AND R2, R0, R1 ; inLocal & ~inGlobal
 STR R2, R5, #-1 ; store in outLocalA
 ; (offset = -1)

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall 2011 - Colorado State University

Example (continued)
! ; next statement:
! ; outLocalB = (inLocal + inGlobal)
; - (inLocal - inGlobal);

 LDR R0, R5, #0 ; inLocal
 LDR R1, R4, #0 ; inGlobal
 ADD R0, R0, R1 ; R0 is sum
 LDR R2, R5, #0 ; inLocal
 LDR R3, R5, #0 ; inGlobal
 NOT R3, R3
 ADD R3, R3, #1
 ADD R2, R2, R3 ; R2 is difference
 NOT R2, R2 ; negate
 ADD R2, R2, #1
 ADD R0, R0, R2 ; R0 = R0 - R2
 STR R0, R5, #-2 ; outLocalB (offset = -2)

