Chapter 5
The LC-3

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
C ti Laye IS

Problems

Devices

CS270 - Spring 2013 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Set Architecture

Q = All of the programmer-visible
components and operations of the computer

= Mmemory organization
Q@ address space -- how may locations can be addressed?
Q@ addressibility -- how many bits per location?
= register set
@ how many? what size? how are they used?
= Instruction set
@ opcodes
Q@ data types
Q@ addressing modes

@ ISA provides all information needed for someone that
wants to write a program in machine language

= Or translate from a high-level language to machine language.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Overview: Memory and Registers

@ Memory
= address space: 216 locations (16-bit addresses)
= addressability: 16 bits

Q@ Registers
= temporary storage, accessed in a single machine cycle
@ accessing memory takes longer than a single cycle
= eight general-purpose registers: RO - R7
@ each 16 bits wide
@ how many bits to uniquely identify a register?
= Other registers

@ not directly addressable, but used by (and affected
by) instructions

@ PC (program counter), condition codes

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Overview: Instruction Set

@ Opcodes
= 15 opcodes, 3 types of instructions
= Operate: ADD, AND, NOT
= Data movement : LD, LDI, LDR, LEA, ST, STR, STI
= Control : BR, JSR/JSRR, JMP, RTI, TRAP

= Some opcodes set/clear condition codes, based on
result:

@N = negative, Z = zero, P = positive (> 0)
Q@ Data Types
= 16-bit 2’'s complement integer
Q@ Addressing Modes
= How is the location of an operand specified?
= non-memory addresses: immediate, register

= memory addresses: PC-relative, indirect, base+offset

CS270 - Spring 2013 - Colorado State University 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Operate Instructions

@ Only three operations: ADD, AND, NOT

@ Source and destination operands are registers
= These instructions do not reference memory.

= ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.

@ Will show with each
Instruction.

=« lllustrates when and where data moves
to accomplish the desired operation

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

NO

T (Rﬁegiste.r)

Note: Src and Dst

Assembly EX:
NOT R3, R2

15 14 13 12 11 10 5 3 2 1 0
NOT (1 0 0 1| Dst Sre (1 11111
Register File
Dst
Src
could be the same register. .
<

N

.
2)

e

CS270 - Spring 2013 - Colorado State University

AND

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ADD/AND (Register) -

15 14 13 12 11 10 ¢ ;] 6 5 4 3
O 0 0 1 Dst Srcl 0|0 O Src:2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 1 0 1 Dst Srecl (0|0 O| Sxrec2
Register File
~Src2
Dst <
Assembly Ex:
Src1 - Add R3, R1, R3
('1“:' @
f2)

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ADD/AND (Immediate)

—
i

14 13 12 11 10 9 8

-
N

ADD [0 0 0 1| Dst | sre1 |1 Trm5
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AND ([0 1 0 1| Dst | Srel |1 Irmm5
Register File Assembly EX:
Add R3, R3, #1
Note: Immediate field is Dst =
sign-extended .
Src1
IR[4:0] " Sext ©
(1) Y Y
\ ALU /
Instruction Reg ©

CS270 - Spring 2013 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Operate Instructions

@ With only ADD, AND, NOT...

How do we shift left?

How do we subtract?

How do we OR?

How do we copy from one register to another?
How do we Initialize a register to zero?

How do we set a particular bit in a zero vector?

CS270 - Spring 2013 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Movement Instructions

Q@ Load -- read data from memory to register
= LD: PC-relative mode
= LDR: base+offset mode
= LDI: Indirect mode

Q@ Store -- write data from register to memory
« ST: PC-relative mode

= STR: base+offset mode
= STI: Indirect mode

Q@ Load effective address -- compute address,
save In register
« LEA: Immediate mode
= does not access memory

CS270 - Spring 2013 - Colorado State University 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PC-Relative Addressing Mode

@ Want to specify address directly in the instruction
=« But an address is 16 bits, and so is an instruction!

= After subtracting 4 bits for opcode and 3 bits for register,
we have 9 bits available for address.

Q@ Solution:
= Use the 9 bits as a signed offset from the current PC.
@ 9 bits: — 256 < offset < +255

@ Can form address such that; PC -256 < X <PC +255

= Remember that PC is incremented as part of the FETCH phase;
= This is done before the EVALUATE ADDRESS stage.

CS270 - Spring 2013 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembly EX:
LD (PC-Relative) ‘2R teben

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0

ID|o 0 1 o] Dst PCoffset9
PC Register File Memory
Dst
a
@

—
Sext

(1 TIR[B:O] \

S

Instruction Reg (2)

A\

MAR

©)

MDR
CS270 - Spring 2013 - Colorado State University

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembly EX:

ST (PC-Rela'“Ve) ST R1, Label2

15 14 13 12 11 10 o 1 0

ST|o 0 1 1| srec PCoffset9

PC Register File Memory

Src

Sext

(1 TIR[8:0]
T N4

Instruction Reg (2)
\4
MAR (3
>
MDR

CS270 - Spring 2013 - Colorado State University

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

L oad Effective Address

@ Computes address like PC-relative (PC plus
signed offset) and stores the result into a
register.

Note: The address Is stored in the register,
not the contents of the memory location.

LEA R1, Begin We can use the destination
LDR R3, R1, #0 register as a pointer

CS270 - Spring 2013 - Colorado State University

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LEA (Immedlate)

15 14 13 12 11 10 2 1 0
LEA |1 1 0| Dst PCoffsetQ
: : Assembly EX:
PC Register File LEARL Labl
Dst
@
Sext l l

) T|R[8:O]

Instruction Reg

CS270 - Spring 2013 -

Colorado State University

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Indirect Addressing Mode

@ With PC-relative mode, can only address data
within 256 words of the instruction.

= What about the rest of memory? Using a location]

Q@ Solution #1: as a pointer

= Read address from memory location,
then load/store to that address.

@ Initial address Is generated from PC and IR
(just like PC-relative addressing), then
content of that address Is used as target for
load/store.

CS270 - Spring 2013 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

. Assembly Ex:
LDI (Indirect) LDI R4, Adr
8 7 6 5 4

15 14 13 12 11 10 © 3 2 1 0

ILDI [1 0 1 0| Dst PCoffset9
PC Register File Memory
Dst
r‘]/\
®
—>
Sext
< TIR[S:O] —
I + / _
(5)
Instruction Reg 2 2
\J
MAR |(4) ©
A h P
MDR)

CS270 - Spring 2013 - Colorado State University

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembly EX:

STI (Indirect) STI R, Ad

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0
STIL |1 0 1 1| src PCoffset9
PC Register File Memory
Src

@ 7_ — X

(5)

—>

Sext

) TIR[S:O]

Instruction Reg

(6)
(_2) R
\
3)
MAR |4 2
(6)
MDR

CS270 - Spring 2013 - Colorado State University

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Base + Offset Addressing Mode

@ With PC-relative mode, can only address data
within 256 words of the instruction.

=« What about the rest of memory?

Q@ Solution #2:
= Use a register to generate a full 16-bit address.
@ 4 bits for opcode, 3 for src/dest register,

3 bits for base register -- remaining 6 bits are
used as a signed offset.

« Offsetis sign-extended before adding to base
register.

CS270 - Spring 2013 - Colorado State University 20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembly EX:
LDR (Base+Offset) or ra.rin
15 14 13 12 11 10 ¢ 10
IDR |0 1 o] Dst | Base offsets
Register File Memory
Dst
(4 Base
—
> Sext |
L
IR[5:0] \V
"'/
Instruction Reg (2)
\4
MAR 3
<«
MDR

CS270 - Spring 2013 - Colorado State University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembly EX:
STR (Base+Offset) STR R4, R1, #1
15 14 13 12 11 10 ¢ 10
STR[0 1 1 1] srec | Base offsetG
Register File Memory
Src
(3) Base
—> Sext -
L
IR[5:0] \V
"'/
Instruction Reg (2)
\4
MAR @
>
MDR

CS270 - Spring 2013 - Colorado State University 22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

Address Instruction Comments
x30F6 111 0001111111101 RI.PC-3x=x30F4
x30F7 0001 010001101110 R2.RL+14=x3102
x30F8 001 1010111111011 M%E?%‘Fj]]:gloz
x30F9 01 01010010100000 R2 — 0
x30FA 0001010010100101 R2.R2+5=5
x30FB 01 1 1010001001110 M[f\zﬂl[;;f(])z]*fé
R3 « M[M[X30F4]]
x30FC 1 01 0011111110111 R3.Mx3102]
opcode R3 .5

CS270 - Spring 2013 - Colorado State University

23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

Address Instruction Comments
x30F6 100011111111 LEA R1, Lab2
x30F7 010100011011 ADD R2, R1, #14
x30F8 110101111110 ST R2, Lab2
x30F9 010100101000 AND R2, R2, #0
x30FA 010100101001 ADD R2, R2, #5
x30FB 110100010011 LDR R2, R1, #14
Xx30FC 100111111101 LDI R2, Lab2
opcode

CS270 - Spring 2013 - Colorado State University

24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC3 Addressing Modes: Comparison

Instruction Example Destination Source
NOT NOT R2, R1 R2 R1
ADD / AND (imm) ADD R3, R2, #7 R3 R2, #7
ADD /AND ADD R3, R2, R1 R3 R2, R1
LD LD R4, LABEL R4 M[LABEL]
ST ST R4, LABEL M[LABEL] R4
LDI LDI R4, HERE R4 M[M[HERE]]
STI STI R4, HERE M[M[HERE]] R4
LDR LDR R4, R2, #-5 R4 M[R2 - 5]
STR STR R4, R2, #5 M[R2 + 5] R4
LEA LEA R4, TARGET R4 address of TARGET

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instructlon Formats

15 14 13 12 11 10 9 8 J G 5 4 3 % 1 0
LEA |1 1 1 0| Dst PCoffset?

15 14 13 12 11 10 9 8 7 & 5 il 3 2 1 0
ADD |0 0 0 1| Dst | Srel |1 Trom5

15 14 13 12 11 10 9 8 7 G 5 4 3 2 1 0
AND |0 1 0 1| Dst | srel |1 Imm5

15 14 13 12 11 10 9 8 7 & 5 il 3 2 1 0
ADD |0 0 0 1| Dst | Srcl |0|0 0| Sre2

15 14 13 12 11 10 9 8 7 & 5 il 3 2 1 0
AND |0 1 0 1| Dst | sxrel |0|0 O| Sre2

15 14 13 12 11 10 4 8 7 o 5 4 3 2 1 0
ST|o 0 1 1| srec PCoffset9

15 14 13 12 11 10 9 8] @ 5 4 3 % 1 0
STR|[o 11 1 Src Base offseté6

15 14 13 12 11 10 9 8] @ 5 4 3 % 1 0
ILDI |1 0 1 0| Dst PCoffset?

26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Instructions

@ Used to alter the sequence of instructions
(by changing the Program Counter)
@ Conditional Branch
= branch is taken if a specified condition Is true
@ signed offset is added to PC to yield new PC
= else, the branch is not taken
@ PC is not changed, points to the next instruction

@ Unconditional Branch (or Jump)
= always changes the PC
Q@ TRAP

= changes PC to the address of an OS “service routine”

= routine will return control to the next instruction (after the
TRAP)

CS270 - Spring 2013 - Colorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Condition Codes

@ LC-3 has three condition code registers:
N -- negative
Z -- Zero
P -- positive (greater than zero)

@ Set by any instruction that writes a value to a
register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

@ Exactly one will be set at all times
= Based on the last instruction that altered a register

CS270 - Spring 2013 - Colorado State University 28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Branch Instruction

@ Branch specifies one or more condition codes.
Q If a set bit is specified, the branch is taken.

« PC-relative addressing:
target address is made by adding signed offset
(IR[8:0]) to current PC.

= Note: PC has already been incremented by FETCH
stage.

= Note: Target must be within 256 words of BR
Instruction.

@ If the branch Is not taken,
the next sequential instruction is executed.

CS270 - Spring 2013 - Colorado State University 29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

] Assembly EX:
BR (PC-Relative) 8rzDone
15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0
BR [0 0 0 O0|n|z]|p PCoffset?
PC A
< =
] —+f PCMUX \
2) taken
Logic M‘ﬁ Sext I
(1 TIR[B:O] N
[11 - _+ /
AT 74 I L Instruction Reg (2)

What happens if bits [11:9] are all zero? All one?

CS270 - Spring 2013 - Colorado State University 30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Branch Instructions

@ Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

Rl — x3100
R3 « O
R2 -~ 12
R4 — M R1]
R3 « R3+R4
=07 >
R2=0" NO Rl « R1+1
R « R2-1
YES |

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sum of 4
iIntegers

;Computes sum of integers
;R1: pointer, initialized to NUMS (x300C)
;R3: sum, initially cleared, accumulated here
;R2: down counter, initially holds number of

numbers 4

.ORIG

DONE

NUMS

SUM

R1 ~ x300C
R3 -~ 0
R2 ~ 12

<

<

R4 — M R1]
R3 - R3+R4
NO Rl -~ R1+1

R - R-1

YES

0x3000

—

ST R3, SUM ;added
HALT

FILL 3

FILL -4

FILL 7

FILL 3

.BLKW 1

.END

CS270 - Spring 2013 -

LOOP

LEA R1,NUMS

AND R3,R3, #0
AND R2,R2, #0
ADD R2, R2, #4

BRz DONE
LDR R4,R1,#0
ADD R3,R3,R4
ADD R1,R1,#1
ADD R2,R2#-1
BRnzp LOOP

Colorado State University

32

Copyright © The McGraw-Hill Companies, Inc

. Pe

rmission required for reproduction or display.

Sample Program

Address Instruction Comments
x3000 11 1000101111111 1R1Lx3100(PC+OXFF)
x3001 0101011011100000 R3 -0
x3002 01 01010010100000 R2 -0
x3003 0001010010101100 R2 ~ 12
x3004 0000010000000 1O0 1 Ifz gotox300A (PC+5)
Xx3005 01 1010000100000 0 LoadnextvaluetoR4
x3006 0 001011011000001 Add to R3
x3007 00010010011 0000 1 IncrementR1 (pointer)
X3008 0001010010111111 Decr(igfr?ttegz
x3009 0000111111 111010 Gotox3004(PC-6)

CS270 - Spring 2013 - Colorado State University 33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instructlon Formats

15 14 13 12 11 10 9 8 J G 5 4 3 % 1 0
LEA |1 1 1 0| Dst PCoffset?

15 14 13 12 11 10 9 8 7 & 5 il 3 2 1 0
ADD |0 0 0 1| Dst | Srel |1 Trom5

15 14 13 12 11 10 9 8 7 G 5 4 3 2 1 0
AND |0 1 0 1| Dst | srel |1 Imm5

15 14 13 12 11 10 9 8 7 & 5 il 3 2 1 0
ADD |0 0 0 1| Dst | Srcl |0|0 0| Sre2

15 14 13 12 11 10 9 8 7 & 5 il 3 2 1 0
AND |0 1 0 1| Dst | sxrel |0|0 O| Sre2

15 14 13 12 11 10 4 8 7 o 5 4 3 2 1 0
ST|o 0 1 1| srec PCoffset9

15 14 13 12 11 10 9 8] @ 5 4 3 % 1 0
STR|[o 11 1 Src Base offseté6

15 14 13 12 11 10 9 8] @ 5 4 3 % 1 0
ILDI |1 0 1 0| Dst PCoffset?

34

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JMP (Register) uers

@ Jump is an unconditional branch -- always taken.
=« Target address is the contents of a register.

« Allows any target address.
15 14 13 12 11 10 9 g 7 1 3 / 1

JMP 1 1 0 0|0 0 0 Base\oooooo

PC Register File

Base

CS270 - Spring 2013 - Colorado State University 35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TRAP TRAP x23

15 14 13 12 11 10 5 4 3 2 1

TRAP |1 11 1/{0000 trapvect8

@ Calls a service routine, identified by 8-bit “trap

vector. vector | routine

Input a character from the
X23
keyboard

X21 |output a character to the monitor

X25 |halt the program

@ When routine is done,
PC is set to the instruction following TRAP.

« We’'ll talk about how this works later.

CS270 - Spring 2013 - Colorado State University

36

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Example
@ Count the occurrences of a character in a file
= Program begins at location x3000
= Read character from keyboard

=« Load each character from a “file”
@ File is a sequence of memory locations

@ Starting address of file is stored in the memory lo cation
iImmediately after the program

If file character equals input character, increment counter
End of file is indicated by an ASCII value: EOT (x04)

At the end, print the number of characters and halt

(assume there will be less than 10 occurrences oft he character)

@ A special character used to indicate the end of a sequence
IS often called a sentinel.

= Useful when you don’t know ahead of time how many t Imes

to execute a loop.
CS270 - Spring 2013 - Colorado State University 37

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Flow Chart

Count=0

(R2=0) Convert count to

YES

Done?

> ASCII character

(R1 7= EOT)
(RO = x30, RO = R2 + RO)

i

i

Ptr = 1st file character

(R3 = M[x3012])

i Print count
YES Match? (TRAP x21)
Input char (R17=R0)
from keybd
(TRAP x23)
HALT
Incr Count (TRAP x25)
Load char from file (R2=R2+1)
(R1 = M[R3))

'

Load next char from file
(R3=R3 + 1, R1 = M[R3)])

CS270 - Spring 2013 - Colorado State University 38

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

.ORIG x3000
AND R2,R2#0 ; R2is counter, initialize to 0
LD R3,PTR ; R3 is pointer to characters
TRAP x23 ; RO gets character input

LDR R1,R3#0 ; R1 gets the next character

: Test character for end of file

TEST ADD R4,R1#-4
BRz OUTPUT

; Test for EOT
; If done, prepare the output

: Test character for match. If a match, increment count.

NOT R1,R1

ADD R1,R1,RO ;If match, R1 = xFFFF

NOT R1,R1 ; If match, R1 = x0000

BRnp GETCHAR ; ho match, do not increment

ADD R2,R2#1

: Get next character from the file

GETCHARADD R3,R3,#1 ; Incrementthe pointer
LDR R1,R3#0 ; R1 gets the next character to
test
BRnzp TEST

; Output the count.

OUTPUT LD RO,ASCII
ADD RO,RO,R2
TRAP x21
TRAP x25

; Load the ASCII template
; Convert binary to ASCII
; ASCII code in RO is displayed
; Halt machine

; Storage for pointer and ASCII template
ASCIlI .FILL x0030

PTR .FILL x3015
.END

CS270 - Spring 2013 - Colorado State University 39

Copyright © The McGraw-Hill Companies, Inc

. Pe

Program (1 of 2)

rmission required for reproduction or display.

Address Instruction Comments
x3000 0 1 01 0100102100000 R2 0/ (counter)
x3001 001001100001 0000 R3.M[x3102](ptr
x3002 1 1110000001000 1 1 InputtoRO (TRAP x23)
x3003 01 10001011000000 R1 — M[R3]
x3004 000110000111 1100 R4-R1L-4(EOT
x30056 0000010000001 000 If Z, goto x300E
x3006 1 0010010011111 11 R1 — NOTR1
x3007 00010010011 00001 Rl ~R1+1
X3008 0001001001000000 R1 -« R1+RO
x3009 0 000101000000001 IfNorP gotox300B

CS270 - Spring 2013 - Colorado State University

40

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program (2 of 2)

Address Instruction Comments

x300A 0001 010010100001 R2 « R2+1

Xx300B 0001 011011100001 R3 « R3+1

x300C 01 10001011000000 R1 — M[R3]

x300Ob 0 000O111111110110 Goto x3004

x300E 00 1 0000000000100 RO ~ M[x3013]
x300F 0001 000000000O01O0 RO — RO + R2
x3010 11110000001 00001 PrintRO(TRAP x21)
x3011 11 1100000010010 1 HALT(TRAP x25)
X3012 Starting Address of File

x3013 0000000000211 0000 ASCII x30 (‘0")

CS270 - Spring 2013 - Colorado State University

41

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gate MARMUX S GatePG
16

| P
ﬁmmmux'\. '—D-F'G—“'| PC

i

As e + REG

| ezl
; i %
7Lt7/ PCMUX Lk
i

S T % T e LD.HEG::-
[Zex7] SR2-—t SE'EF gi'lr <7 SR
[Fa) i As As
ADD R2 ML —* ADDR1MUX
4 L
{6 LE 16 LE ,LE + /’1’5
. [10:0] L : | - s
Filled arrow YR BT Fasalizad 7 i
. 8: I

= info to be processed. s el

Unfilled arrow B0 o ST .
= control signal. mconroL| |
LDIR —&:'? ’_l" _IﬂF-""_ LD 3

16 ‘ LOGIC

15/“’ ,I’m A8
S, O
LO.MDR —=| MDR MAR —=— LD.MAR

[

MEMORY MPUT QUTPUT

MEM.EN, RW

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components

@ Global bus

= special set of wires that carry a 16-bit signal
to many components

= Inputs to the bus are “tri-state devices”, that only place a
signal on the bus when they are enabled

= only one (16-bit) signal should be enabled at any time
@ control unit decides which signal “drives” the bus
= any number of components can read the bus

@ register only captures bus data if it is write-enabled
by the control unit

@ Memory

« Control and data registers for memory and I/O devices
= memory: MAR, MDR (also control signal for read/write)

CS270 - Spring 2013 - Colorado State University 43

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gate MARMUX S GatePG
16

| P
ﬁmmmux'\. '—D-F'G—“'| PC

i

As e + REG

| ezl
; i %
7Lt7/ PCMUX Lk
i

S T % T e LD.HEG::-
[Zex7] SR2-—t SE'EF gi'lr <7 SR
[Fa) i As As
ADD R2 ML —* ADDR1MUX
4 L
{6 LE 16 LE ,LE + /’1’5
. [10:0] L : | - s
Filled arrow YR BT Fasalizad 7 i
. 8: I

= info to be processed. s el

Unfilled arrow B0 o ST .
= control signal. mconroL| |
LDIR —&:'? ’_l" _IﬂF-""_ LD 3

16 ‘ LOGIC

15/“’ ,I’m A8
S, O
LO.MDR —=| MDR MAR —=— LD.MAR

[

MEMORY MPUT QUTPUT

MEM.EN, RW

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components

o ALU

= Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

= Output goes to bus.
@ used by condition code logic, register file, memory

Q@ Register File

= Two read addresses (SR1, SR2), one write address
(DR)
= Input from bus
@ result of ALU operation or memory read
= Two 16-bit outputs
@ used by ALU, PC, memory address
Q@ data for store instructions passes through ALU

CS270 - Spring 2013 - Colorado State University 45

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gate MARMUX S GatePG
16

| P
ﬁmmmux'\. '—D-F'G—“'| PC

i

As e + REG

| ezl
; i %
7Lt7/ PCMUX Lk
i

S T % T e LD.HEG::-
[Zex7] SR2-—t SE'EF gi'lr <7 SR
[Fa) i As As
ADD R2 ML —* ADDR1MUX
4 L
{6 LE 16 LE ,LE + /’1’5
. [10:0] L : | - s
Filled arrow YR BT Fasalizad 7 i
. 8: I

= info to be processed. s el

Unfilled arrow B0 o ST .
= control signal. mconroL| |
LDIR —&:'? ’_l" _IﬂF-""_ LD 3

16 ‘ LOGIC

15/“’ ,I’m A8
S, O
LO.MDR —=| MDR MAR —=— LD.MAR

[

MEMORY MPUT QUTPUT

MEM.EN, RW

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components

@ PC and PCMUX
= Three inputs to PC, controlled by PCMUX
1.PC+1 - FETCH stage
2.Address adder — BR, JMP
3.bus — TRAP (discussed later)

» MAR and MARMUX
. Two inputs to MAR, controlled by MARMUX
1.Address adder — LD/ST, LDR/STR
2.Zero-extended IR[7:0] -- TRAP (discussed later)

CS270 - Spring 2013 - Colorado State University

a7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gate MARMUX S GatePG
16

| P
ﬁmmmux'\. '—D-F'G—“'| PC

i

As e + REG

| ezl
; i %
7Lt7/ PCMUX Lk
i

S T % T e LD.HEG::-
[Zex7] SR2-—t SE'EF gi'lr <7 SR
[Fa) i As As
ADD R2 ML —* ADDR1MUX
4 L
{6 LE 16 LE ,LE + /’1’5
. [10:0] L : | - s
Filled arrow YR BT Fasalizad 7 i
. 8: I

= info to be processed. s el

Unfilled arrow B0 o ST .
= control signal. mconroL| |
LDIR —&:'? ’_l" _IﬂF-""_ LD 3

16 ‘ LOGIC

15/“’ ,I’m A8
S, O
LO.MDR —=| MDR MAR —=— LD.MAR

[

MEMORY MPUT QUTPUT

MEM.EN, RW

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Path Components

@ Condition Code Logic
= Looks at value on bus and generates N, Z, P signals
= Registers set only when control unit enables them (LD.CC)

@ only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

@ Control Unit — Finite State Machine

= On each machine cycle, changes control signals for next
phase of instruction processing

@ who drives the bus? (GatePC, GateALU, ...)
@ which registers are write enabled? (LD.IR, LD.REG, ...)
@ which operation should ALU perform? (ALUK)

= Logic includes decoder for opcode, etc.

CS270 - Spring 2013 - Colorado State University 49

