
Chapter 5
The LC-3

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Spring 2013 - Colorado State University

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Spring 2013 - Colorado State University

Instruction Set Architecture
ISA = All of the programmer-visible
components and operations of the computer
� memory organization

address space -- how may locations can be addressed?
addressibility -- how many bits per location?

� register set
how many? what size? how are they used?

� instruction set
opcodes
data types
addressing modes

ISA provides all information needed for someone that
wants to write a program in machine language
� or translate from a high-level language to machine language.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4CS270 - Spring 2013 - Colorado State University

LC-3 Overview: Memory and Registers
Memory
� address space: 216 locations (16-bit addresses)
� addressability: 16 bits

Registers
� temporary storage, accessed in a single machine cycle

accessing memory takes longer than a single cycle
� eight general-purpose registers: R0 - R7

each 16 bits wide
how many bits to uniquely identify a register?

� other registers
not directly addressable, but used by (and affected
by) instructions
PC (program counter), condition codes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

LC-3 Overview: Instruction Set
Opcodes
� 15 opcodes, 3 types of instructions
� Operate : ADD, AND, NOT
� Data movement : LD, LDI, LDR, LEA, ST, STR, STI
� Control : BR, JSR/JSRR, JMP, RTI, TRAP
� some opcodes set/clear condition codes, based on

result:
N = negative, Z = zero, P = positive (> 0)

Data Types
� 16-bit 2’s complement integer

Addressing Modes
� How is the location of an operand specified?
� non-memory addresses: immediate, register
� memory addresses: PC-relative, indirect, base+offset

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

Operate Instructions

Only three operations: ADD, AND, NOT
Source and destination operands are registers
� These instructions do not reference memory.
� ADD and AND can use “immediate” mode,

where one operand is hard-wired into the instruction.

Will show dataflow diagram with each
instruction.
� illustrates when and where data moves

to accomplish the desired operation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

NOT (Register)

Note: Src and Dst
could be the same register.

Assembly Ex:
NOT R3, R2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Spring 2013 - Colorado State University

ADD/AND (Register)this zero means “register mode”

Assembly Ex:
Add R3, R1, R3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Spring 2013 - Colorado State University

ADD/AND (Immediate)

Note: Immediate field is
sign-extended .

this one means “immediate mode”

Assembly Ex:
Add R3, R3, #1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Spring 2013 - Colorado State University

Using Operate Instructions

With only ADD, AND, NOT…
� How do we shift left?

� How do we subtract? Hint: Negate and add
� How do we OR? Hint: Demorgan’s law
� How do we copy from one register to another?
� How do we initialize a register to zero?
� How do we set a particular bit in a zero vector?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Spring 2013 - Colorado State University

Data Movement Instructions
Load -- read data from memory to register
� LD: PC-relative mode
� LDR: base+offset mode
� LDI: indirect mode

Store -- write data from register to memory
� ST: PC-relative mode
� STR: base+offset mode
� STI: indirect mode

Load effective address -- compute address,
save in register
� LEA: immediate mode
� does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Spring 2013 - Colorado State University

Want to specify address directly in the instruction
� But an address is 16 bits, and so is an instruction!
� After subtracting 4 bits for opcode and 3 bits for register,

we have 9 bits available for address.

Solution:
� Use the 9 bits as a signed offset from the current PC.

9 bits:
Can form address such that:
� Remember that PC is incremented as part of the FETCH phase;
� This is done before the EVALUATE ADDRESS stage.

PC-Relative Addressing Mode

255offset256 +≤≤−

255PCX256PC +≤≤−

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Spring 2013 - Colorado State University

LD (PC-Relative)
Assembly Ex:
LD R1, Label1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Spring 2013 - Colorado State University

ST (PC-Relative)
Assembly Ex:
ST R1, Label2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Spring 2013 - Colorado State University

Load Effective Address

Computes address like PC-relative (PC plus
signed offset) and stores the result into a
register.

Note : The address is stored in the register,
not the contents of the memory location.

We can use the destination
register as a pointer

LEA R1, Begin
LDR R3, R1, #0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Spring 2013 - Colorado State University

LEA (Immediate)

Assembly Ex:
LEA R1, Lab1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Spring 2013 - Colorado State University

Indirect Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
� What about the rest of memory?

Solution #1:
� Read address from memory location,

then load/store to that address.

Initial address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for
load/store.

Using a location
as a pointer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Spring 2013 - Colorado State University

LDI (Indirect)
Assembly Ex:
LDI R4, Adr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Spring 2013 - Colorado State University

STI (Indirect)
Assembly Ex:
STI R4, Adr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Spring 2013 - Colorado State University

Base + Offset Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
� What about the rest of memory?

Solution #2:
� Use a register to generate a full 16-bit address.

4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are
used as a signed offset.

� Offset is sign-extended before adding to base
register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Spring 2013 - Colorado State University

LDR (Base+Offset)
Assembly Ex:
LDR R4, R1, #1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Spring 2013 - Colorado State University

STR (Base+Offset)
Assembly Ex:
STR R4, R1, #1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23CS270 - Spring 2013 - Colorado State University

Example

opcodeopcodeopcodeopcode

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1 ←←←← PC – 3 = x30F4

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2 ←←←← R1 + 14 = x3102

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[PC - 5] ←←←← R2
M[x30F4] ←←←← x3102

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ←←←← 0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2 ←←←← R2 + 5 = 5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14] ←←←← R2
M[x3102] ←←←← 5

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1
R3 ←←←← M[M[x30F4]]

R3 ←←←← M[x3102]
R3 ←←←← 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24CS270 - Spring 2013 - Colorado State University

Example

opcodeopcodeopcodeopcode

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 LEA R1, Lab2

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 ADD R2, R1, #14

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 ST R2, Lab2

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 AND R2, R2, #0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 ADD R2, R2, #5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 LDR R2, R1, #14

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 LDI R2, Lab2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC3 Addressing Modes: Comparison

25CS270 - Spring 2013 - Colorado State University

Instruction Example Destination Source

NOT NOT R2, R1 R2 R1

ADD / AND (imm) ADD R3, R2, #7 R3 R2, #7

ADD /AND ADD R3, R2, R1 R3 R2, R1

LD LD R4, LABEL R4 M[LABEL]

ST ST R4, LABEL M[LABEL] R4

LDI LDI R4, HERE R4 M[M[HERE]]

STI STI R4, HERE M[M[HERE]] R4

LDR LDR R4, R2, #−5 R4 M[R2 − 5]

STR STR R4, R2, #5 M[R2 + 5] R4

LEA LEA R4, TARGET R4 address of TARGET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Formats

26CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27CS270 - Spring 2013 - Colorado State University

Control Instructions
Used to alter the sequence of instructions
(by changing the Program Counter)
Conditional Branch
� branch is taken if a specified condition is true

signed offset is added to PC to yield new PC
� else, the branch is not taken

PC is not changed, points to the next instruction
Unconditional Branch (or Jump)
� always changes the PC

TRAP
� changes PC to the address of an OS “service routine”
� routine will return control to the next instruction (after the

TRAP)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28CS270 - Spring 2013 - Colorado State University

Condition Codes

LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

Set by any instruction that writes a value to a
register
(ADD, AND, NOT, LD, LDR, LDI, LEA)
Exactly one will be set at all times
� Based on the last instruction that altered a register

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29CS270 - Spring 2013 - Colorado State University

Branch Instruction

Branch specifies one or more condition codes.
If a set bit is specified, the branch is taken.

� PC-relative addressing:
target address is made by adding signed offset
(IR[8:0]) to current PC.

� Note: PC has already been incremented by FETCH
stage.

� Note: Target must be within 256 words of BR
instruction.

If the branch is not taken,
the next sequential instruction is executed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30CS270 - Spring 2013 - Colorado State University

BR (PC-Relative)

What happens if bits [11:9] are all zero? All one?

Assembly Ex:
BRz Done

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31CS270 - Spring 2013 - Colorado State University

Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 ← x3100
R3 ← 0
R2 ← 12

R2=0?

R4 ← M[R1]
R3 ← R3+R4
R1 ← R1+1
R2 ← R2-1

NO

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sum of 4
integers

;Computes sum of integers
;R1: pointer, initialized to NUMS (x300C)
;R3: sum, initially cleared, accumulated here
;R2: down counter, initially holds number of
numbers 4
.ORIG 0x3000

…………

DONE ST R3, SUM ;added
HALT

NUMS .FILL 3
.FILL -4
.FILL 7
.FILL 3

SUM .BLKW 1
.END

32CS270 - Spring 2013 - Colorado State University

LEA R1,NUMS
AND R3,R3, #0
AND R2,R2, #0
ADD R2, R2, #4

LOOP BRz DONE
LDR R4,R1,#0
ADD R3,R3,R4
ADD R1,R1,#1
ADD R2,R2,#-1
BRnzp LOOP

R1 ← x300C
R3 ← 0
R2 ← 12

R2=0?

R4 ← M[R1]
R3 ← R3+R4
R1 ← R1+1
R2 ← R2-1

NO

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33CS270 - Spring 2013 - Colorado State University

Sample Program
Address Instruction Comments

x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1 ←←←← x3100 (PC+0xFF)

x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 ←←←← 0

x3002 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ←←←← 0

x3003 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 R2 ←←←← 12

x3004 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 If Z, goto x300A (PC+5)

x3005 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 Load next value to R4

x3006 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 Add to R3

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 Increment R1 (pointer)

X3008 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 Decrement R2
(counter)

x3009 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 Goto x3004 (PC-6)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Formats

34CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35CS270 - Spring 2013 - Colorado State University

JMP (Register)
Jump is an unconditional branch -- always taken.
� Target address is the contents of a register.
� Allows any target address.

Assembly Ex:
JMP R3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36CS270 - Spring 2013 - Colorado State University

TRAP

Calls a service routine, identified by 8-bit “trap
vector.”

When routine is done,
PC is set to the instruction following TRAP.
� We’ll talk about how this works later.

vector routine

x23 input a character from the
keyboard

x21 output a character to the monitor
x25 halt the program

Assembly Ex:
TRAP x23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37CS270 - Spring 2013 - Colorado State University

Another Example
Count the occurrences of a character in a file
� Program begins at location x3000
� Read character from keyboard
� Load each character from a “file”

File is a sequence of memory locations
Starting address of file is stored in the memory lo cation
immediately after the program

� If file character equals input character, increment counter
� End of file is indicated by an ASCII value: EOT (x04)
� At the end, print the number of characters and halt

(assume there will be less than 10 occurrences of t he character)

A special character used to indicate the end of a sequence
is often called a sentinel.
� Useful when you don’t know ahead of time how many t imes

to execute a loop.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

38CS270 - Spring 2013 - Colorado State University

Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

39CS270 - Spring 2013 - Colorado State University

; Get next character from the file
;
GETCHAR ADD R3,R3,#1 ; Increment the pointer

LDR R1,R3,#0 ; R1 gets the next character to
test

BRnzp TEST
;
; Output the count.
;
OUTPUT LD R0,ASCII ; Load the ASCII template

ADD R0,R0,R2 ; Convert binary to ASCII
TRAP x21 ; ASCII code in R0 is displayed
TRAP x25 ; Halt machine

;
; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x3015

.END

.ORIG x3000
AND R2,R2,#0 ; R2 is counter, initialize to 0
LD R3,PTR ; R3 is pointer to characters
TRAP x23 ; R0 gets character input
LDR R1,R3,#0 ; R1 gets the next character

;
; Test character for end of file
;

TEST ADD R4,R1,#-4 ; Test for EOT
BRz OUTPUT ; If done, prepare the output

;
; Test character for match. If a match, increment count.
;

NOT R1,R1
ADD R1,R1,R0 ; If match, R1 = xFFFF
NOT R1,R1 ; If match, R1 = x0000
BRnp GETCHAR ; no match, do not increment
ADD R2,R2,#1

;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Address Instruction Comments

x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ←←←← 0 (counter)

x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 ←←←← M[x3102] (ptr)

x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 Input to R0 (TRAP x23)

x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ←←←← M[R3]

x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 ←←←← R1 – 4 (EOT)

x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 If Z, goto x300E

x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 ←←←← NOT R1

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 ←←←← R1 + 1

X3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 ←←←← R1 + R0

x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 If N or P, goto x300B

40CS270 - Spring 2013 - Colorado State University

Program (1 of 2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Address Instruction Comments

x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 ←←←← R2 + 1

x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 ←←←← R3 + 1

x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ←←←← M[R3]

x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 Goto x3004

x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 ←←←← M[x3013]

x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 ←←←← R0 + R2

x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Print R0 (TRAP x21)

x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT (TRAP x25)

X3012 Starting Address of File

x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII x30 (‘0’)

41CS270 - Spring 2013 - Colorado State University

Program (2 of 2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

42CS270 - Spring 2013 - Colorado State University

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

43CS270 - Spring 2013 - Colorado State University

Data Path Components
Global bus
� special set of wires that carry a 16-bit signal

to many components
� inputs to the bus are “tri-state devices”, that only place a

signal on the bus when they are enabled
� only one (16-bit) signal should be enabled at any time

control unit decides which signal “drives” the bus
� any number of components can read the bus

register only captures bus data if it is write-enabled
by the control unit

Memory
� Control and data registers for memory and I/O devices
� memory: MAR, MDR (also control signal for read/write)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

44CS270 - Spring 2013 - Colorado State University

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

45CS270 - Spring 2013 - Colorado State University

Data Path Components
ALU
� Accepts inputs from register file

and from sign-extended bits from IR (immediate field).
� Output goes to bus.

used by condition code logic, register file, memory

Register File
� Two read addresses (SR1, SR2), one write address

(DR)
� Input from bus

result of ALU operation or memory read
� Two 16-bit outputs

used by ALU, PC, memory address
data for store instructions passes through ALU

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

46CS270 - Spring 2013 - Colorado State University

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

47CS270 - Spring 2013 - Colorado State University

Data Path Components

PC and PCMUX
� Three inputs to PC, controlled by PCMUX

1.PC+1 – FETCH stage
2.Address adder – BR, JMP
3.bus – TRAP (discussed later)

� MAR and MARMUX
• Two inputs to MAR, controlled by MARMUX

1.Address adder – LD/ST, LDR/STR
2.Zero-extended IR[7:0] -- TRAP (discussed later)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

48CS270 - Spring 2013 - Colorado State University

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

49CS270 - Spring 2013 - Colorado State University

Data Path Components
Condition Code Logic
� Looks at value on bus and generates N, Z, P signals
� Registers set only when control unit enables them (LD.CC)

only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit – Finite State Machine
� On each machine cycle, changes control signals for next

phase of instruction processing
who drives the bus? (GatePC, GateALU, …)

which registers are write enabled? (LD.IR, LD.REG, …)

which operation should ALU perform? (ALUK)

� Logic includes decoder for opcode, etc.

